Skip to main content

Add-on to pymatgen for diffusion analysis.

Project description

CI Status https://coveralls.io/repos/github/materialsvirtuallab/pymatgen-diffusion/badge.svg?branch=master

pymatgen-analysis-diffusion

Formerly pymatgen-diffusion, this is an add-on to pymatgen for diffusion analysis that is developed by the Materials Virtual Lab. Note that it relies on pymatgen for structural manipulations, file io, and preliminary analyses. This is and will always be, a scientific work in progress. Pls check back regularly for more details.

Major Update (v2021.3.5)

pymatgen-analysis-diffusion is now released as a namespace package pymatgen-analysis-diffusion on PyPI. It should be imported via pymatgen.analysis.diffusion instead pymatgen_diffusion. To install this package via pip:

pip install pymatgen-analysis-diffusion

Features (non-exhaustive!)

  1. Van-Hove analysis

  2. Probability density

  3. Clustering (e.g., k-means with periodic boundary conditions).

  4. Migration path finding and IDPP.

Citing

If you use pymatgen-diffusion in your research, please cite the following work:

Deng, Z.; Zhu, Z.; Chu, I.H.; Ong, S. P. Data-Driven First-Principles
Methods for the Study and Design of Alkali Superionic Conductors,
Chem. Mater., 2016, acs.chemmater.6b02648, doi:10.1021/acs.chemmater.6b02648.

You should also include the following citation for the pymatgen core package given that it forms the basis for most of the analyses:

Shyue Ping Ong, William Davidson Richards, Anubhav Jain, Geoffroy Hautier,
Michael Kocher, Shreyas Cholia, Dan Gunter, Vincent Chevrier, Kristin A.
Persson, Gerbrand Ceder. *Python Materials Genomics (pymatgen) : A Robust,
Open-Source Python Library for Materials Analysis.* Computational
Materials Science, 2013, 68, 314-319. doi:10.1016/j.commatsci.2012.10.028.

In addtion, some of the analyses may also have relevant publications that you should cite. Please consult the documentation of each module.

Contributing

We welcome contributions in all forms. If you’d like to contribute, please fork this repository, make changes and send us a pull request!

Acknowledgements

We gratefully acknowledge funding from the following agencies for the development of this code:

  1. US National Science Foundation’s Designing Materials to Revolutionize and Engineer our Future (DMREF) program under Grant No. 1436976 for the AIMD analysis package.

  2. US Department of Energy, Office of Science, Basic Energy Sciences under Award No. DE-SC0012118 for the NEB analysis package.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pymatgen-analysis-diffusion-2023.8.15.tar.gz (78.9 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file pymatgen-analysis-diffusion-2023.8.15.tar.gz.

File metadata

File hashes

Hashes for pymatgen-analysis-diffusion-2023.8.15.tar.gz
Algorithm Hash digest
SHA256 d19835320a2cb80ab2160234978a39f4a01994ba7f6eac6de5a4c93e032a9251
MD5 9733a8c1a67a0601323b9cfcbd47ef42
BLAKE2b-256 d999faa307afbef43a80108bc2aaea92f4667e2cab24a79ee4896f0c2ff8eccc

See more details on using hashes here.

File details

Details for the file pymatgen_analysis_diffusion-2023.8.15-py3-none-any.whl.

File metadata

File hashes

Hashes for pymatgen_analysis_diffusion-2023.8.15-py3-none-any.whl
Algorithm Hash digest
SHA256 4d4bb33646647edbe9a9467312b97c5983a8ceede53025dc313c46006e8f5030
MD5 4b28817c767f708a3d0ac7391e882136
BLAKE2b-256 5cfed090b8973caf596b37197db52492e303722e823eacd28313670bf976d3bb

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page