Skip to main content

Pymatgen add-on for diffusion analysis.

Reason this release was yanked:

Buggy

Project description

CI Status https://coveralls.io/repos/github/materialsvirtuallab/pymatgen-diffusion/badge.svg?branch=master

pymatgen-analysis-diffusion

Formerly pymatgen-diffusion, this is an add-on to pymatgen for diffusion analysis that is developed by the Materials Virtual Lab. Note that it relies on pymatgen for structural manipulations, file io, and preliminary analyses. This is and will always be, a scientific work in progress. Pls check back regularly for more details.

Documentation available via Github Pages.

Major Update (v2021.3.5)

pymatgen-analysis-diffusion is now released as a namespace package pymatgen-analysis-diffusion on PyPI. It should be imported via pymatgen.analysis.diffusion instead pymatgen_diffusion. To install this package via pip:

pip install pymatgen-analysis-diffusion

Features (non-exhaustive!)

  1. Van-Hove analysis

  2. Probability density

  3. Clustering (e.g., k-means with periodic boundary conditions).

  4. Migration path finding and IDPP.

Citing

If you use pymatgen-diffusion in your research, please cite the following work:

Deng, Z.; Zhu, Z.; Chu, I.H.; Ong, S. P. Data-Driven First-Principles
Methods for the Study and Design of Alkali Superionic Conductors,
Chem. Mater., 2016, acs.chemmater.6b02648, doi:10.1021/acs.chemmater.6b02648.

You should also include the following citation for the pymatgen core package given that it forms the basis for most of the analyses:

Shyue Ping Ong, William Davidson Richards, Anubhav Jain, Geoffroy Hautier,
Michael Kocher, Shreyas Cholia, Dan Gunter, Vincent Chevrier, Kristin A.
Persson, Gerbrand Ceder. *Python Materials Genomics (pymatgen) : A Robust,
Open-Source Python Library for Materials Analysis.* Computational
Materials Science, 2013, 68, 314-319. doi:10.1016/j.commatsci.2012.10.028.

In addition, some of the analyses may also have relevant publications that you should cite. Please consult the documentation of each module.

Contributing

We welcome contributions in all forms. If you’d like to contribute, please fork this repository, make changes and send us a pull request!

Acknowledgments

We gratefully acknowledge funding from the following agencies for the development of this code:

  1. US National Science Foundation’s Designing Materials to Revolutionize and Engineer our Future (DMREF) program under Grant No. 1436976 for the AIMD analysis package.

  2. US Department of Energy, Office of Science, Basic Energy Sciences under Award No. DE-SC0012118 for the NEB analysis package.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pymatgen_analysis_diffusion-2024.6.24.tar.gz (78.4 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file pymatgen_analysis_diffusion-2024.6.24.tar.gz.

File metadata

File hashes

Hashes for pymatgen_analysis_diffusion-2024.6.24.tar.gz
Algorithm Hash digest
SHA256 5d840e0fa74392b14ba65eeb9389529b0e1cfc0563e5e47d9e0b9f875b8fd72f
MD5 e4fa70e3d805d2c1a1a4f7c1cf81896a
BLAKE2b-256 983980f2317abf63feebe05fc842e8cdd84db2e88923a40ef042280e58e316e6

See more details on using hashes here.

File details

Details for the file pymatgen_analysis_diffusion-2024.6.24-py3-none-any.whl.

File metadata

File hashes

Hashes for pymatgen_analysis_diffusion-2024.6.24-py3-none-any.whl
Algorithm Hash digest
SHA256 92ca3ae99a18401635f938a58762e6349d8254fc5c289b8ac334e263c8d626af
MD5 8d68d0bf430de32ca8b364858417ecfa
BLAKE2b-256 8e80121ad44a46c07a0c9ecdb2493c3e82891a0a800040f72b580f0264177407

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page