Skip to main content

Pymatgen add-on for diffusion analysis.

Reason this release was yanked:

Bad release

Project description

CI Status https://codecov.io/gh/materialsvirtuallab/pymatgen-analysis-diffusion/graph/badge.svg?token=4lH4UZcXye

pymatgen-analysis-diffusion

Formerly pymatgen-diffusion, this is an add-on to pymatgen for diffusion analysis that is developed by the Materials Virtual Lab. Note that it relies on pymatgen for structural manipulations, file io, and preliminary analyses. This is and will always be, a scientific work in progress. Pls check back regularly for more details.

Documentation available via Github Pages.

Major Update (v2021.3.5)

pymatgen-analysis-diffusion is now released as a namespace package pymatgen-analysis-diffusion on PyPI. It should be imported via pymatgen.analysis.diffusion instead pymatgen_diffusion. To install this package via pip:

pip install pymatgen-analysis-diffusion

Features (non-exhaustive!)

  1. Van-Hove analysis

  2. Probability density

  3. Clustering (e.g., k-means with periodic boundary conditions).

  4. Migration path finding and IDPP.

Citing

If you use pymatgen-diffusion in your research, please cite the following work:

Deng, Z.; Zhu, Z.; Chu, I.H.; Ong, S. P. Data-Driven First-Principles
Methods for the Study and Design of Alkali Superionic Conductors,
Chem. Mater., 2016, acs.chemmater.6b02648, doi:10.1021/acs.chemmater.6b02648.

You should also include the following citation for the pymatgen core package given that it forms the basis for most of the analyses:

Shyue Ping Ong, William Davidson Richards, Anubhav Jain, Geoffroy Hautier,
Michael Kocher, Shreyas Cholia, Dan Gunter, Vincent Chevrier, Kristin A.
Persson, Gerbrand Ceder. *Python Materials Genomics (pymatgen) : A Robust,
Open-Source Python Library for Materials Analysis.* Computational
Materials Science, 2013, 68, 314-319. doi:10.1016/j.commatsci.2012.10.028.

In addition, some of the analyses may also have relevant publications that you should cite. Please consult the documentation of each module.

Contributing

We welcome contributions in all forms. If you’d like to contribute, please fork this repository, make changes and send us a pull request!

Acknowledgments

We gratefully acknowledge funding from the following agencies for the development of this code:

  1. US National Science Foundation’s Designing Materials to Revolutionize and Engineer our Future (DMREF) program under Grant No. 1436976 for the AIMD analysis package.

  2. US Department of Energy, Office of Science, Basic Energy Sciences under Award No. DE-SC0012118 for the NEB analysis package.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pymatgen_analysis_diffusion-2024.6.25.tar.gz (77.9 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file pymatgen_analysis_diffusion-2024.6.25.tar.gz.

File metadata

File hashes

Hashes for pymatgen_analysis_diffusion-2024.6.25.tar.gz
Algorithm Hash digest
SHA256 e73d264425a218d19b7f0b0f8024a32fcefd39122f2d436291663ce9d2f2e6ee
MD5 175384e504b190df9cfeca6729e1694c
BLAKE2b-256 9d89b78ab97cdc891187eca8f7cc8cb9649ecd3872f24d64f0c93e9860cb6a1b

See more details on using hashes here.

File details

Details for the file pymatgen_analysis_diffusion-2024.6.25-py3-none-any.whl.

File metadata

File hashes

Hashes for pymatgen_analysis_diffusion-2024.6.25-py3-none-any.whl
Algorithm Hash digest
SHA256 0a221d119acc8e8c4630b0efe775dd90485c53e34be2efbdcb92b82d21a9ed31
MD5 3f2b068c8a6c91913b178d3478feeaf6
BLAKE2b-256 6316aff9c6506a383b5efac2994f6d5ac803da0b43ebcbafd0ab1412eaaa834e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page