Skip to main content

Pymatgen add-on for diffusion analysis.

Project description

CI Status https://codecov.io/gh/materialsvirtuallab/pymatgen-analysis-diffusion/graph/badge.svg?token=4lH4UZcXye

pymatgen-analysis-diffusion

Formerly pymatgen-diffusion, this is an add-on to pymatgen for diffusion analysis that is developed by the Materials Virtual Lab. Note that it relies on pymatgen for structural manipulations, file io, and preliminary analyses. This is and will always be, a scientific work in progress. Pls check back regularly for more details.

Documentation available via Github Pages.

Major Update (v2021.3.5)

pymatgen-analysis-diffusion is now released as a namespace package pymatgen-analysis-diffusion on PyPI. It should be imported via pymatgen.analysis.diffusion instead pymatgen_diffusion. To install this package via pip:

pip install pymatgen-analysis-diffusion

Features (non-exhaustive!)

  1. Van-Hove analysis

  2. Probability density

  3. Clustering (e.g., k-means with periodic boundary conditions).

  4. Migration path finding and IDPP.

Citing

If you use pymatgen-diffusion in your research, please cite the following work:

Deng, Z.; Zhu, Z.; Chu, I.H.; Ong, S. P. Data-Driven First-Principles
Methods for the Study and Design of Alkali Superionic Conductors,
Chem. Mater., 2016, acs.chemmater.6b02648, doi:10.1021/acs.chemmater.6b02648.

You should also include the following citation for the pymatgen core package given that it forms the basis for most of the analyses:

Shyue Ping Ong, William Davidson Richards, Anubhav Jain, Geoffroy Hautier,
Michael Kocher, Shreyas Cholia, Dan Gunter, Vincent Chevrier, Kristin A.
Persson, Gerbrand Ceder. *Python Materials Genomics (pymatgen) : A Robust,
Open-Source Python Library for Materials Analysis.* Computational
Materials Science, 2013, 68, 314-319. doi:10.1016/j.commatsci.2012.10.028.

In addition, some of the analyses may also have relevant publications that you should cite. Please consult the documentation of each module.

Contributing

We welcome contributions in all forms. If you’d like to contribute, please fork this repository, make changes and send us a pull request!

Acknowledgments

We gratefully acknowledge funding from the following agencies for the development of this code:

  1. US National Science Foundation’s Designing Materials to Revolutionize and Engineer our Future (DMREF) program under Grant No. 1436976 for the AIMD analysis package.

  2. US Department of Energy, Office of Science, Basic Energy Sciences under Award No. DE-SC0012118 for the NEB analysis package.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pymatgen_analysis_diffusion-2024.6.25.1.tar.gz (78.0 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file pymatgen_analysis_diffusion-2024.6.25.1.tar.gz.

File metadata

File hashes

Hashes for pymatgen_analysis_diffusion-2024.6.25.1.tar.gz
Algorithm Hash digest
SHA256 d81b0f195bb4f1b75324e8e33be4b2021ec17f79733ef7292a6d6b3da31b43ca
MD5 5b59688b5f772de40ac20f832eeb5282
BLAKE2b-256 70a3837b923c1f4b2c23df5c81511022189448144743f8df592b50a1c0628774

See more details on using hashes here.

File details

Details for the file pymatgen_analysis_diffusion-2024.6.25.1-py3-none-any.whl.

File metadata

File hashes

Hashes for pymatgen_analysis_diffusion-2024.6.25.1-py3-none-any.whl
Algorithm Hash digest
SHA256 29c05a5f9c671bfaab52c2ce6c9cde7bf2728d927b4b1751ac8b54f9e5929d2d
MD5 4a69f1fca2beddf588ab7041ff38ddcb
BLAKE2b-256 15d49f642d9fe053e49805f507ea8c9a5f74541ca99080d610d44d2260bd69aa

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page