Skip to main content

Pymatgen add-on for diffusion analysis.

Project description

CI Status https://codecov.io/gh/materialsvirtuallab/pymatgen-analysis-diffusion/graph/badge.svg?token=4lH4UZcXye

pymatgen-analysis-diffusion

Formerly pymatgen-diffusion, this is an add-on to pymatgen for diffusion analysis that is developed by the Materials Virtual Lab. Note that it relies on pymatgen for structural manipulations, file io, and preliminary analyses. This is and will always be, a scientific work in progress. Pls check back regularly for more details.

Documentation available via Github Pages.

Major Update (v2021.3.5)

pymatgen-analysis-diffusion is now released as a namespace package pymatgen-analysis-diffusion on PyPI. It should be imported via pymatgen.analysis.diffusion instead pymatgen_diffusion. To install this package via pip:

pip install pymatgen-analysis-diffusion

Features (non-exhaustive!)

  1. Van-Hove analysis

  2. Probability density

  3. Clustering (e.g., k-means with periodic boundary conditions).

  4. Migration path finding and IDPP.

Citing

If you use pymatgen-diffusion in your research, please cite the following work:

Deng, Z.; Zhu, Z.; Chu, I.H.; Ong, S. P. Data-Driven First-Principles
Methods for the Study and Design of Alkali Superionic Conductors,
Chem. Mater., 2016, acs.chemmater.6b02648, doi:10.1021/acs.chemmater.6b02648.

You should also include the following citation for the pymatgen core package given that it forms the basis for most of the analyses:

Shyue Ping Ong, William Davidson Richards, Anubhav Jain, Geoffroy Hautier,
Michael Kocher, Shreyas Cholia, Dan Gunter, Vincent Chevrier, Kristin A.
Persson, Gerbrand Ceder. *Python Materials Genomics (pymatgen) : A Robust,
Open-Source Python Library for Materials Analysis.* Computational
Materials Science, 2013, 68, 314-319. doi:10.1016/j.commatsci.2012.10.028.

In addition, some of the analyses may also have relevant publications that you should cite. Please consult the documentation of each module.

Contributing

We welcome contributions in all forms. If you’d like to contribute, please fork this repository, make changes and send us a pull request!

Acknowledgments

We gratefully acknowledge funding from the following agencies for the development of this code:

  1. US National Science Foundation’s Designing Materials to Revolutionize and Engineer our Future (DMREF) program under Grant No. 1436976 for the AIMD analysis package.

  2. US Department of Energy, Office of Science, Basic Energy Sciences under Award No. DE-SC0012118 for the NEB analysis package.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pymatgen_analysis_diffusion-2024.6.27.tar.gz (78.0 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file pymatgen_analysis_diffusion-2024.6.27.tar.gz.

File metadata

File hashes

Hashes for pymatgen_analysis_diffusion-2024.6.27.tar.gz
Algorithm Hash digest
SHA256 602a2efe8f77d579dccb83f5284ceaa236d2f6f1a811062968fa23db35e22ffb
MD5 fd06fe3f932695ee5f1c36167a5e78c7
BLAKE2b-256 b5a5af67171bd183f47d3684dce4fdf7e7b3144a73b6f0023c5b8bdfa959cc90

See more details on using hashes here.

File details

Details for the file pymatgen_analysis_diffusion-2024.6.27-py3-none-any.whl.

File metadata

File hashes

Hashes for pymatgen_analysis_diffusion-2024.6.27-py3-none-any.whl
Algorithm Hash digest
SHA256 7e9889e46650ee51d4dfac0b001e2adfb543bc1ab2f4c742226d681a34eb3b0c
MD5 b637421ded615704ffbbdcb5011ecf6b
BLAKE2b-256 227bf769e0cc5bae6fa7fc0c3c8bcc30cd86b40d976f7db8bb35d721d1437d97

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page