Skip to main content

Python Materials Genomics is a robust materials analysis code that defines core object representations for structures and molecules with support for many electronic structure codes. It is currently the core analysis code powering the Materials Project (https://www.materialsproject.org).

Project description


Official docs: `http://pymatgen.org <http://pymatgen.org/>`_

Pymatgen (Python Materials Genomics) is a robust, open-source Python library
for materials analysis. These are some of the main features:

1. Highly flexible classes for the representation of Element, Site, Molecule,
Structure objects.
2. Extensive input/output support, including support for VASP
(http://cms.mpi.univie.ac.at/vasp/), ABINIT (http://www.abinit.org/), CIF,
Gaussian, XYZ, and many other file formats.
3. Powerful analysis tools, including generation of phase diagrams, Pourbaix
diagrams, diffusion analyses, reactions, etc.
4. Electronic structure analyses, such as density of states and band structure.
5. Integration with the Materials Project REST API.

Pymatgen is free to use. However, we also welcome your help to improve this
library by making your own contributions. These contributions can be in the
form of additional tools or modules you develop, or feature requests and bug
reports. Please report any bugs and issues at pymatgen's `Github page
<https://github.com/materialsproject/pymatgen>`_. If you wish to be notified
of pymatgen releases, you may become a member of `pymatgen's Google Groups page
<https://groups.google.com/forum/?fromgroups#!forum/pymatgen/>`_.

Why use pymatgen?
=================

There are many materials analysis codes out there, both commerical and free,
but pymatgen offer several advantages:

1. **It is (fairly) robust.** Pymatgen is used by thousands of researchers,
and is the analysis code powering the `Materials Project`_. The analysis it
produces survives rigorous scrutiny every single day. Bugs tend to be
found and corrected quickly. Pymatgen also uses
`CircleCI <https://circleci.com>`_ and `Appveyor <https://www.appveyor.com/>`_
for continuous integration on the Linux and Windows platforms,
respectively, which ensures that every commit passes a comprehensive suite
of unittests. The coverage of the unittests can be seen at
`here <coverage/index.html>`_.
2. **It is well documented.** A fairly comprehensive documentation has been
written to help you get to grips with it quickly.
3. **It is open.** You are free to use and contribute to pymatgen. It also means
that pymatgen is continuously being improved. We will attribute any code you
contribute to any publication you specify. Contributing to pymatgen means
your research becomes more visible, which translates to greater impact.
4. **It is fast.** Many of the core numerical methods in pymatgen have been
optimized by vectorizing in numpy/scipy. This means that coordinate
manipulations are extremely fast and are in fact comparable to codes
written in other languages. Pymatgen also comes with a complete system for
handling periodic boundary conditions.
5. **It will be around.** Pymatgen is not a pet research project. It is used in
the well-established Materials Project. It is also actively being developed
and maintained by the `Materials Virtual Lab`_, the ABINIT group and many
other research groups.

With effect from version 3.0, pymatgen now supports both Python 2.7 as well
as Python 3.x.


Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pymatgen-2018.11.30.tar.gz (2.0 MB view details)

Uploaded Source

Built Distributions

pymatgen-2018.11.30-cp37-cp37m-macosx_10_7_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.7m macOS 10.7+ x86-64

pymatgen-2018.11.30-cp27-cp27m-macosx_10_6_x86_64.whl (2.4 MB view details)

Uploaded CPython 2.7m macOS 10.6+ x86-64

File details

Details for the file pymatgen-2018.11.30.tar.gz.

File metadata

  • Download URL: pymatgen-2018.11.30.tar.gz
  • Upload date:
  • Size: 2.0 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.20.1 setuptools/40.6.2 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.7.1

File hashes

Hashes for pymatgen-2018.11.30.tar.gz
Algorithm Hash digest
SHA256 4138a18632576e337d2a1bf45c0d863a3a248a1aba1eaf4cdcc3eb3107af39d8
MD5 5f06a9f24bfbff6a48066268f9b158d9
BLAKE2b-256 5f4507d8cfd27a8d9d20acf9c081fea7b4e6f17e142fb43508cb1e1043486892

See more details on using hashes here.

File details

Details for the file pymatgen-2018.11.30-cp37-cp37m-macosx_10_7_x86_64.whl.

File metadata

  • Download URL: pymatgen-2018.11.30-cp37-cp37m-macosx_10_7_x86_64.whl
  • Upload date:
  • Size: 2.4 MB
  • Tags: CPython 3.7m, macOS 10.7+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.20.1 setuptools/40.6.2 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.7.1

File hashes

Hashes for pymatgen-2018.11.30-cp37-cp37m-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 f987c8551c1b583971f6de3c202034ac91f6269c9e4dce11908229d1f75d2658
MD5 82e40b85a76556efa8861ea929b7492d
BLAKE2b-256 7d7cabf530e821bf071aac387f88fa26b0245c46c22c87457719cf73b988bfa2

See more details on using hashes here.

File details

Details for the file pymatgen-2018.11.30-cp27-cp27m-macosx_10_6_x86_64.whl.

File metadata

  • Download URL: pymatgen-2018.11.30-cp27-cp27m-macosx_10_6_x86_64.whl
  • Upload date:
  • Size: 2.4 MB
  • Tags: CPython 2.7m, macOS 10.6+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.20.1 setuptools/40.6.2 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.7.1

File hashes

Hashes for pymatgen-2018.11.30-cp27-cp27m-macosx_10_6_x86_64.whl
Algorithm Hash digest
SHA256 05732670a6afa0fc2132966022b3136f60413a2046df91ccb49142ad8e60e391
MD5 d576ff000ec34ffb43af61cf94bc3fa1
BLAKE2b-256 60356b4a588405ad256172b7e7e6b70ce3e78de5bf5632f1c4be38a09041cd52

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page