Skip to main content

Python Materials Genomics is a robust materials analysis code that defines core object representations for structures and molecules with support for many electronic structure codes. It is currently the core analysis code powering the Materials Project (https://www.materialsproject.org).

Project description

Official docs: http://pymatgen.org

Pymatgen (Python Materials Genomics) is a robust, open-source Python library for materials analysis. These are some of the main features:

  1. Highly flexible classes for the representation of Element, Site, Molecule, Structure objects.
  2. Extensive input/output support, including support for VASP, ABINIT, CIF, Gaussian, XYZ, and many other file formats.
  3. Powerful analysis tools, including generation of phase diagrams, Pourbaix diagrams, diffusion analyses, reactions, etc.
  4. Electronic structure analyses, such as density of states and band structure.
  5. Integration with the Materials Project REST API.

Pymatgen is free to use. However, we also welcome your help to improve this library by making your own contributions. These contributions can be in the form of additional tools or modules you develop, or feature requests and bug reports. Please report any bugs and issues at pymatgen's [Github page] (https://github.com/materialsproject/pymatgen). For help with any pymatgen issues, please use the Discourse page.

Why use pymatgen?

There are many materials analysis codes out there, both commerical and free, but pymatgen offer several advantages:

  1. It is (fairly) robust. Pymatgen is used by thousands of researchers, and is the analysis code powering the Materials Project. The analysis it produces survives rigorous scrutiny every single day. Bugs tend to be found and corrected quickly. Pymatgen also uses CircleCI and Appveyor for continuous integration on the Linux and Windows platforms, respectively, which ensures that every commit passes a comprehensive suite of unittests.
  2. It is well documented. A fairly comprehensive documentation has been written to help you get to grips with it quickly.
  3. It is open. You are free to use and contribute to pymatgen. It also means that pymatgen is continuously being improved. We will attribute any code you contribute to any publication you specify. Contributing to pymatgen means your research becomes more visible, which translates to greater impact.
  4. It is fast. Many of the core numerical methods in pymatgen have been optimized by vectorizing in numpy/scipy. This means that coordinate manipulations are extremely fast and are in fact comparable to codes written in other languages. Pymatgen also comes with a complete system for handling periodic boundary conditions.
  5. It will be around. Pymatgen is not a pet research project. It is used in the well-established Materials Project. It is also actively being developed and maintained by the Materials Virtual Lab, the ABINIT group and many other research groups.

With effect from version 2019.1.1, pymatgen only supports Python 3.x. Users who require Python 2.7 should install pymatgen v2018.x.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pymatgen-2020.6.8.tar.gz (2.7 MB view details)

Uploaded Source

Built Distributions

pymatgen-2020.6.8-cp38-cp38-win_amd64.whl (3.2 MB view details)

Uploaded CPython 3.8 Windows x86-64

pymatgen-2020.6.8-cp38-cp38-win32.whl (3.2 MB view details)

Uploaded CPython 3.8 Windows x86

pymatgen-2020.6.8-cp38-cp38-macosx_10_9_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

pymatgen-2020.6.8-cp37-cp37m-win_amd64.whl (3.2 MB view details)

Uploaded CPython 3.7m Windows x86-64

pymatgen-2020.6.8-cp37-cp37m-win32.whl (3.2 MB view details)

Uploaded CPython 3.7m Windows x86

pymatgen-2020.6.8-cp37-cp37m-macosx_10_9_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

pymatgen-2020.6.8-cp36-cp36m-win_amd64.whl (3.2 MB view details)

Uploaded CPython 3.6m Windows x86-64

pymatgen-2020.6.8-cp36-cp36m-win32.whl (3.2 MB view details)

Uploaded CPython 3.6m Windows x86

pymatgen-2020.6.8-cp36-cp36m-macosx_10_9_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file pymatgen-2020.6.8.tar.gz.

File metadata

  • Download URL: pymatgen-2020.6.8.tar.gz
  • Upload date:
  • Size: 2.7 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/47.1.1.post20200604 requests-toolbelt/0.9.1 tqdm/4.41.0 CPython/3.8.3

File hashes

Hashes for pymatgen-2020.6.8.tar.gz
Algorithm Hash digest
SHA256 0e5abdcb755f830d3a9fda37831f0091d7cb039363130ae646ee1a63aa5095e4
MD5 ee3ae507dc5984cbf799f432fd3ddc2e
BLAKE2b-256 ab53e422527e7d8e794a922f1f67896e5db2ae3b0d34c949ee5a11c652123d50

See more details on using hashes here.

File details

Details for the file pymatgen-2020.6.8-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: pymatgen-2020.6.8-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 3.2 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/47.1.1.post20200604 requests-toolbelt/0.9.1 tqdm/4.41.0 CPython/3.8.3

File hashes

Hashes for pymatgen-2020.6.8-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 5e48502595595ec043ec240ef38db17483549be085c69903d80e47761bd9d699
MD5 b7b1726650a3549b2385124b9d5c1f35
BLAKE2b-256 8244239832de178b95213276ba1ae0ce5466eadbbb44be75fe5435aacee867fe

See more details on using hashes here.

File details

Details for the file pymatgen-2020.6.8-cp38-cp38-win32.whl.

File metadata

  • Download URL: pymatgen-2020.6.8-cp38-cp38-win32.whl
  • Upload date:
  • Size: 3.2 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/47.1.1.post20200604 requests-toolbelt/0.9.1 tqdm/4.41.0 CPython/3.8.3

File hashes

Hashes for pymatgen-2020.6.8-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 afa56cf34db5c43d0e058eef3e503bcca9f9d5bd70b87f71875bd87d37b90fb0
MD5 c949071f621f8dbb23af99fae1aa7d36
BLAKE2b-256 1ae279291a9e9c73a3dcd1775a35c80586ae1be7a93c085ced9bee2a5cad7888

See more details on using hashes here.

File details

Details for the file pymatgen-2020.6.8-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: pymatgen-2020.6.8-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 3.3 MB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/47.1.1.post20200604 requests-toolbelt/0.9.1 tqdm/4.41.0 CPython/3.8.3

File hashes

Hashes for pymatgen-2020.6.8-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d742cedccbf3cd5920264259862688b5f7c401c7d7fbb7c5b186d9c86231ac42
MD5 27998749c14c72e6d730482827907130
BLAKE2b-256 782816a821038cee125532a3202083ad62d2cd02c150b7079fa9f10cbe10a64a

See more details on using hashes here.

File details

Details for the file pymatgen-2020.6.8-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: pymatgen-2020.6.8-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 3.2 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/47.1.1.post20200604 requests-toolbelt/0.9.1 tqdm/4.41.0 CPython/3.8.3

File hashes

Hashes for pymatgen-2020.6.8-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 b1b88776304fdda0167c2f1dc1b933cb4894be6a823482e5d3e668ccbccfeee3
MD5 fe9f5dbf7b0711e05ced803c5c4f4e8d
BLAKE2b-256 144eec24ea6731e16acd77779ee1986bb4f0d14061eb21a51b1c463bac178f09

See more details on using hashes here.

File details

Details for the file pymatgen-2020.6.8-cp37-cp37m-win32.whl.

File metadata

  • Download URL: pymatgen-2020.6.8-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 3.2 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/47.1.1.post20200604 requests-toolbelt/0.9.1 tqdm/4.41.0 CPython/3.8.3

File hashes

Hashes for pymatgen-2020.6.8-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 1af20186c52ba0e8ea521eb5b0471f015ad45c689120cc1fb7eb67c4f06335e0
MD5 96c6f1456fd62bdb77ce84b5ace836d4
BLAKE2b-256 b44b161cc3d33491ab006380e95e193c969f0fb5ff848990a2caf28f96ef1b21

See more details on using hashes here.

File details

Details for the file pymatgen-2020.6.8-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: pymatgen-2020.6.8-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 3.3 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/47.1.1.post20200604 requests-toolbelt/0.9.1 tqdm/4.41.0 CPython/3.8.3

File hashes

Hashes for pymatgen-2020.6.8-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f54aa9e7f26d4d28d25cff8ff236a633a4eb84ecd2ab813b7102ccc9dccf035e
MD5 b1a16ac5601795074d867e882e456243
BLAKE2b-256 72ed6110a7653742b52c1926dbf38e31913519fc6e153923631363c04c42273b

See more details on using hashes here.

File details

Details for the file pymatgen-2020.6.8-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: pymatgen-2020.6.8-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 3.2 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/47.1.1.post20200604 requests-toolbelt/0.9.1 tqdm/4.41.0 CPython/3.8.3

File hashes

Hashes for pymatgen-2020.6.8-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 4900d452db40fd942298d2bb9a6a3e34d772bc29746997fbd7383b0209f0b5cc
MD5 cfba554491480bebb0f5b3903c5260ad
BLAKE2b-256 36f92932a8dd33b3fae91fa4ff40cf995fe4db5db7fbd39cf7345bfb6299cb13

See more details on using hashes here.

File details

Details for the file pymatgen-2020.6.8-cp36-cp36m-win32.whl.

File metadata

  • Download URL: pymatgen-2020.6.8-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 3.2 MB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/47.1.1.post20200604 requests-toolbelt/0.9.1 tqdm/4.41.0 CPython/3.8.3

File hashes

Hashes for pymatgen-2020.6.8-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 01ab6ca075e50693a736781d8c7b64fd011ee6f765386d743d960a84d2ba4fe7
MD5 7d3c8af1291f6de71c9b01e376e451dc
BLAKE2b-256 1a8a9b5f668ab14fb6f0e9e5a32b758bb2d048670d03d5d19dc4938525e1f9b6

See more details on using hashes here.

File details

Details for the file pymatgen-2020.6.8-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: pymatgen-2020.6.8-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 3.3 MB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/47.1.1.post20200604 requests-toolbelt/0.9.1 tqdm/4.41.0 CPython/3.8.3

File hashes

Hashes for pymatgen-2020.6.8-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 57857b17f398fd25f502683959f5d06a80b64bafd6ee2bbfc212a46580132e57
MD5 1464b950a20095d84406b8a246c37777
BLAKE2b-256 b17b799097fb59e7f2c33cd01b9977a1af2099ff1c973fb7a551f38a6a435b75

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page