Skip to main content

Python Materials Genomics is a robust materials analysis code that defines core object representations for structures and molecules with support for many electronic structure codes. It is currently the core analysis code powering the Materials Project (https://www.materialsproject.org).

Project description

Official docs: http://pymatgen.org

Pymatgen (Python Materials Genomics) is a robust, open-source Python library for materials analysis. These are some of the main features:

  1. Highly flexible classes for the representation of Element, Site, Molecule, Structure objects.
  2. Extensive input/output support, including support for VASP, ABINIT, CIF, Gaussian, XYZ, and many other file formats.
  3. Powerful analysis tools, including generation of phase diagrams, Pourbaix diagrams, diffusion analyses, reactions, etc.
  4. Electronic structure analyses, such as density of states and band structure.
  5. Integration with the Materials Project REST API.

Pymatgen is free to use. However, we also welcome your help to improve this library by making your own contributions. These contributions can be in the form of additional tools or modules you develop, or feature requests and bug reports. Please report any bugs and issues at pymatgen's [Github page] (https://github.com/materialsproject/pymatgen). For help with any pymatgen issues, please use the Discourse page.

Why use pymatgen?

There are many materials analysis codes out there, both commerical and free, but pymatgen offer several advantages:

  1. It is (fairly) robust. Pymatgen is used by thousands of researchers, and is the analysis code powering the Materials Project. The analysis it produces survives rigorous scrutiny every single day. Bugs tend to be found and corrected quickly. Pymatgen also uses CircleCI and Appveyor for continuous integration on the Linux and Windows platforms, respectively, which ensures that every commit passes a comprehensive suite of unittests.
  2. It is well documented. A fairly comprehensive documentation has been written to help you get to grips with it quickly.
  3. It is open. You are free to use and contribute to pymatgen. It also means that pymatgen is continuously being improved. We will attribute any code you contribute to any publication you specify. Contributing to pymatgen means your research becomes more visible, which translates to greater impact.
  4. It is fast. Many of the core numerical methods in pymatgen have been optimized by vectorizing in numpy/scipy. This means that coordinate manipulations are extremely fast and are in fact comparable to codes written in other languages. Pymatgen also comes with a complete system for handling periodic boundary conditions.
  5. It will be around. Pymatgen is not a pet research project. It is used in the well-established Materials Project. It is also actively being developed and maintained by the Materials Virtual Lab, the ABINIT group and many other research groups.

With effect from version 2019.1.1, pymatgen only supports Python 3.x. Users who require Python 2.7 should install pymatgen v2018.x.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pymatgen-2020.7.10.tar.gz (2.7 MB view details)

Uploaded Source

Built Distribution

pymatgen-2020.7.10-cp38-cp38-macosx_10_9_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file pymatgen-2020.7.10.tar.gz.

File metadata

  • Download URL: pymatgen-2020.7.10.tar.gz
  • Upload date:
  • Size: 2.7 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/47.1.1.post20200604 requests-toolbelt/0.9.1 tqdm/4.41.0 CPython/3.8.3

File hashes

Hashes for pymatgen-2020.7.10.tar.gz
Algorithm Hash digest
SHA256 08d47796dd6cf1cb625b7eefe0080dcfc99b76070e42b1b9b569b5d3207c80e2
MD5 d40e9fe2f767aa42f5c7d981b62ca8d4
BLAKE2b-256 736a7d7888f7eadf2bf9188e76eec5ad84b6b1336873bd9e943a2e82ae3ca846

See more details on using hashes here.

File details

Details for the file pymatgen-2020.7.10-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: pymatgen-2020.7.10-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 3.3 MB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/47.1.1.post20200604 requests-toolbelt/0.9.1 tqdm/4.41.0 CPython/3.8.3

File hashes

Hashes for pymatgen-2020.7.10-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a1e971c4f4f5b2a3c121a1b771af5c65660e4f4a21f529eaa82eed6a7774f229
MD5 1c2f6f9253bdd4e5fac306af14f61303
BLAKE2b-256 6e4dddf2f8a2db00e537560ad676c171ce8034c55dab7e76936a3aea60cebf07

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page