Skip to main content

Python Materials Genomics is a robust materials analysis code that defines core object representations for structures and molecules with support for many electronic structure codes. It is currently the core analysis code powering the Materials Project (https://www.materialsproject.org).

Project description

Official docs: http://pymatgen.org

Pymatgen (Python Materials Genomics) is a robust, open-source Python library for materials analysis. These are some of the main features:

  1. Highly flexible classes for the representation of Element, Site, Molecule, Structure objects.
  2. Extensive input/output support, including support for VASP, ABINIT, CIF, Gaussian, XYZ, and many other file formats.
  3. Powerful analysis tools, including generation of phase diagrams, Pourbaix diagrams, diffusion analyses, reactions, etc.
  4. Electronic structure analyses, such as density of states and band structure.
  5. Integration with the Materials Project REST API.

Pymatgen is free to use. However, we also welcome your help to improve this library by making your own contributions. These contributions can be in the form of additional tools or modules you develop, or feature requests and bug reports. Please report any bugs and issues at pymatgen's [Github page] (https://github.com/materialsproject/pymatgen). For help with any pymatgen issues, please use the Discourse page.

Why use pymatgen?

There are many materials analysis codes out there, both commerical and free, but pymatgen offer several advantages:

  1. It is (fairly) robust. Pymatgen is used by thousands of researchers, and is the analysis code powering the Materials Project. The analysis it produces survives rigorous scrutiny every single day. Bugs tend to be found and corrected quickly. Pymatgen also uses CircleCI and Appveyor for continuous integration on the Linux and Windows platforms, respectively, which ensures that every commit passes a comprehensive suite of unittests.
  2. It is well documented. A fairly comprehensive documentation has been written to help you get to grips with it quickly.
  3. It is open. You are free to use and contribute to pymatgen. It also means that pymatgen is continuously being improved. We will attribute any code you contribute to any publication you specify. Contributing to pymatgen means your research becomes more visible, which translates to greater impact.
  4. It is fast. Many of the core numerical methods in pymatgen have been optimized by vectorizing in numpy/scipy. This means that coordinate manipulations are extremely fast and are in fact comparable to codes written in other languages. Pymatgen also comes with a complete system for handling periodic boundary conditions.
  5. It will be around. Pymatgen is not a pet research project. It is used in the well-established Materials Project. It is also actively being developed and maintained by the Materials Virtual Lab, the ABINIT group and many other research groups.

With effect from version 2019.1.1, pymatgen only supports Python 3.x. Users who require Python 2.7 should install pymatgen v2018.x.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pymatgen-2020.8.13.tar.gz (2.7 MB view details)

Uploaded Source

Built Distributions

pymatgen-2020.8.13-cp38-cp38-macosx_10_14_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

pymatgen-2020.8.13-cp36-cp36m-macosx_10_14_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.6m macOS 10.14+ x86-64

File details

Details for the file pymatgen-2020.8.13.tar.gz.

File metadata

  • Download URL: pymatgen-2020.8.13.tar.gz
  • Upload date:
  • Size: 2.7 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.1.0 requests-toolbelt/0.9.1 tqdm/4.47.0 CPython/3.8.5

File hashes

Hashes for pymatgen-2020.8.13.tar.gz
Algorithm Hash digest
SHA256 23e5885e15195b37ce4c16ef93f474f741cb98451fa8dd4c319ec121f4887256
MD5 96f44782a2112076f0c3e087eaac7155
BLAKE2b-256 403973a70c0e14003399e6d558350cb32d4f459679a7795198d8b2cb9bac45a5

See more details on using hashes here.

File details

Details for the file pymatgen-2020.8.13-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: pymatgen-2020.8.13-cp38-cp38-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 3.9 MB
  • Tags: CPython 3.8, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.1.0 requests-toolbelt/0.9.1 tqdm/4.47.0 CPython/3.8.5

File hashes

Hashes for pymatgen-2020.8.13-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 8ce7ee31584701b5e0a2d41361c5863e9c6c311bdd9f1e7c75e2d99adf6ac4ff
MD5 997182cfc7c1bddbc3a5c82ae3e83847
BLAKE2b-256 d2aa42acf6cc64faddf124b0d706411e4a90945819a33d588f3ec74f407997e2

See more details on using hashes here.

File details

Details for the file pymatgen-2020.8.13-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: pymatgen-2020.8.13-cp36-cp36m-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 3.9 MB
  • Tags: CPython 3.6m, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/40.6.2 requests-toolbelt/0.9.1 tqdm/4.47.0 CPython/3.6.11

File hashes

Hashes for pymatgen-2020.8.13-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 f8ebe3356f3b7dbbdd111335af9348876bbf35f438c2925192679bbd73833838
MD5 72aa28c22def965cdf9f6a3c2d8a6cf4
BLAKE2b-256 34c2bcfabab7b8e3dfa1562eaa2bfa973bc68a9bb1afee46fba67c9b60196dfe

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page