Skip to main content

Python Materials Genomics is a robust materials analysis code that defines core object representations for structures and molecules with support for many electronic structure codes. It is currently the core analysis code powering the Materials Project (https://www.materialsproject.org).

Project description

Official docs: http://pymatgen.org

Pymatgen (Python Materials Genomics) is a robust, open-source Python library for materials analysis. These are some of the main features:

  1. Highly flexible classes for the representation of Element, Site, Molecule, Structure objects.
  2. Extensive input/output support, including support for VASP, ABINIT, CIF, Gaussian, XYZ, and many other file formats.
  3. Powerful analysis tools, including generation of phase diagrams, Pourbaix diagrams, diffusion analyses, reactions, etc.
  4. Electronic structure analyses, such as density of states and band structure.
  5. Integration with the Materials Project REST API.

Pymatgen is free to use. However, we also welcome your help to improve this library by making your own contributions. These contributions can be in the form of additional tools or modules you develop, or feature requests and bug reports. Please report any bugs and issues at pymatgen's [Github page] (https://github.com/materialsproject/pymatgen). For help with any pymatgen issues, please use the Discourse page.

Why use pymatgen?

There are many materials analysis codes out there, both commerical and free, but pymatgen offer several advantages:

  1. It is (fairly) robust. Pymatgen is used by thousands of researchers, and is the analysis code powering the Materials Project. The analysis it produces survives rigorous scrutiny every single day. Bugs tend to be found and corrected quickly. Pymatgen also uses CircleCI and Appveyor for continuous integration on the Linux and Windows platforms, respectively, which ensures that every commit passes a comprehensive suite of unittests.
  2. It is well documented. A fairly comprehensive documentation has been written to help you get to grips with it quickly.
  3. It is open. You are free to use and contribute to pymatgen. It also means that pymatgen is continuously being improved. We will attribute any code you contribute to any publication you specify. Contributing to pymatgen means your research becomes more visible, which translates to greater impact.
  4. It is fast. Many of the core numerical methods in pymatgen have been optimized by vectorizing in numpy/scipy. This means that coordinate manipulations are extremely fast and are in fact comparable to codes written in other languages. Pymatgen also comes with a complete system for handling periodic boundary conditions.
  5. It will be around. Pymatgen is not a pet research project. It is used in the well-established Materials Project. It is also actively being developed and maintained by the Materials Virtual Lab, the ABINIT group and many other research groups.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pymatgen-2022.1.24.tar.gz (2.6 MB view details)

Uploaded Source

Built Distributions

pymatgen-2022.1.24-cp310-cp310-win_amd64.whl (3.0 MB view details)

Uploaded CPython 3.10 Windows x86-64

pymatgen-2022.1.24-cp310-cp310-macosx_10_15_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.10 macOS 10.15+ x86-64

pymatgen-2022.1.24-cp39-cp39-win_amd64.whl (3.0 MB view details)

Uploaded CPython 3.9 Windows x86-64

pymatgen-2022.1.24-cp39-cp39-macosx_11_0_arm64.whl (3.0 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pymatgen-2022.1.24-cp39-cp39-macosx_10_15_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.9 macOS 10.15+ x86-64

pymatgen-2022.1.24-cp38-cp38-win_amd64.whl (3.0 MB view details)

Uploaded CPython 3.8 Windows x86-64

pymatgen-2022.1.24-cp38-cp38-macosx_10_14_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

File details

Details for the file pymatgen-2022.1.24.tar.gz.

File metadata

  • Download URL: pymatgen-2022.1.24.tar.gz
  • Upload date:
  • Size: 2.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.9.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for pymatgen-2022.1.24.tar.gz
Algorithm Hash digest
SHA256 167af9c2f732f2eb0f1d191c0c1eac8130e675905ef64f2bb251011c3c884a14
MD5 00c5e404172a965963595b1f7584a575
BLAKE2b-256 dd2388309d52e094376e839c60d636d86291aed4d60d186b9b59a9f6aff4d39d

See more details on using hashes here.

File details

Details for the file pymatgen-2022.1.24-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: pymatgen-2022.1.24-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 3.0 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.1

File hashes

Hashes for pymatgen-2022.1.24-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 2105ed78204397b6c650041aea3e312e1ead2a272297ced84094061d8be332c4
MD5 35435f1d2b5159fa7bdeeb21ded83cf8
BLAKE2b-256 277d56f661205f25345267360950cb8289c3db57b355d7c46f675d66f0ee4004

See more details on using hashes here.

File details

Details for the file pymatgen-2022.1.24-cp310-cp310-macosx_10_15_x86_64.whl.

File metadata

  • Download URL: pymatgen-2022.1.24-cp310-cp310-macosx_10_15_x86_64.whl
  • Upload date:
  • Size: 3.1 MB
  • Tags: CPython 3.10, macOS 10.15+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.2

File hashes

Hashes for pymatgen-2022.1.24-cp310-cp310-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 087460d3160ff97192e75518d5be14b1dd627af33b10437e60a0d505db75e547
MD5 c7eafaf5a4c65daa369ef8722dff6b54
BLAKE2b-256 f8b49203b189a02f4b44b7047e77bacfe20523d1a449dcf6d33b90d73e965293

See more details on using hashes here.

File details

Details for the file pymatgen-2022.1.24-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pymatgen-2022.1.24-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 3.0 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for pymatgen-2022.1.24-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 4b258b178948417e53c1908ee2d18b614d7fa1a40c392fd794ba669fc7baf22c
MD5 97e1700dd2cdba42170d483da181ffe6
BLAKE2b-256 657b04ae49a464f0c1806f75dd009178a38b13b3f1cd6d2d0e4c45b559159b68

See more details on using hashes here.

File details

Details for the file pymatgen-2022.1.24-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

  • Download URL: pymatgen-2022.1.24-cp39-cp39-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 3.0 MB
  • Tags: CPython 3.9, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.9.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for pymatgen-2022.1.24-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 5ad4de22368e39f3c7021d88984482cb2bdb0d200d54e96f1bb3624c15979d5e
MD5 f8c38c08788b82eaca0ea866952fcff4
BLAKE2b-256 ab1bb943bb2345585cc259d58115909a64d5d689639f26c78d2fbd0a1a963850

See more details on using hashes here.

File details

Details for the file pymatgen-2022.1.24-cp39-cp39-macosx_10_15_x86_64.whl.

File metadata

  • Download URL: pymatgen-2022.1.24-cp39-cp39-macosx_10_15_x86_64.whl
  • Upload date:
  • Size: 3.1 MB
  • Tags: CPython 3.9, macOS 10.15+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.10

File hashes

Hashes for pymatgen-2022.1.24-cp39-cp39-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 292a770877901f9a3651d16b3b8ba668cd289997dc06bfd60ccef343643b70f7
MD5 28d546ab7611d14869d5db9e58b7e9ac
BLAKE2b-256 3caa5c36b8c55258af51753a8327ce54cb5fc5f736585558e21a6ea57646bf83

See more details on using hashes here.

File details

Details for the file pymatgen-2022.1.24-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: pymatgen-2022.1.24-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 3.0 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for pymatgen-2022.1.24-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 190821a023f2ce113c75c89c05a0f3ce555fd2b5d4d67c7ad9f1acf9c9f7bf09
MD5 5c2103ff4d4da44a491053f51d5ae9a1
BLAKE2b-256 89be9c000cf93785bb118a9b9d8c6117cf5229139080bfbfb67398db602ecac9

See more details on using hashes here.

File details

Details for the file pymatgen-2022.1.24-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: pymatgen-2022.1.24-cp38-cp38-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 3.1 MB
  • Tags: CPython 3.8, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for pymatgen-2022.1.24-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 3e74f6f4219b36db663c071c84f4312ec29386eea783561b42f6612d5784f49d
MD5 2d0d343969fbeb7c4909b0b6f4b68941
BLAKE2b-256 052f3a2748ca075a84c4a7362fdf0d8d2303c1912279d82772c3ab16be09b8d8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page