Skip to main content

Python Materials Genomics is a robust materials analysis code that defines core object representations for structures and molecules with support for many electronic structure codes. It is currently the core analysis code powering the Materials Project (https://www.materialsproject.org).

Project description

Official docs: http://pymatgen.org

Pymatgen (Python Materials Genomics) is a robust, open-source Python library for materials analysis. These are some of the main features:

  1. Highly flexible classes for the representation of Element, Site, Molecule, Structure objects.
  2. Extensive input/output support, including support for VASP, ABINIT, CIF, Gaussian, XYZ, and many other file formats.
  3. Powerful analysis tools, including generation of phase diagrams, Pourbaix diagrams, diffusion analyses, reactions, etc.
  4. Electronic structure analyses, such as density of states and band structure.
  5. Integration with the Materials Project REST API.

Pymatgen is free to use. However, we also welcome your help to improve this library by making your own contributions. These contributions can be in the form of additional tools or modules you develop, or feature requests and bug reports. Please report any bugs and issues at pymatgen's [Github page] (https://github.com/materialsproject/pymatgen). For help with any pymatgen issues, please use the Discourse page.

Why use pymatgen?

There are many materials analysis codes out there, both commerical and free, but pymatgen offer several advantages:

  1. It is (fairly) robust. Pymatgen is used by thousands of researchers, and is the analysis code powering the Materials Project. The analysis it produces survives rigorous scrutiny every single day. Bugs tend to be found and corrected quickly. Pymatgen also uses CircleCI and Appveyor for continuous integration on the Linux and Windows platforms, respectively, which ensures that every commit passes a comprehensive suite of unittests.
  2. It is well documented. A fairly comprehensive documentation has been written to help you get to grips with it quickly.
  3. It is open. You are free to use and contribute to pymatgen. It also means that pymatgen is continuously being improved. We will attribute any code you contribute to any publication you specify. Contributing to pymatgen means your research becomes more visible, which translates to greater impact.
  4. It is fast. Many of the core numerical methods in pymatgen have been optimized by vectorizing in numpy/scipy. This means that coordinate manipulations are extremely fast and are in fact comparable to codes written in other languages. Pymatgen also comes with a complete system for handling periodic boundary conditions.
  5. It will be around. Pymatgen is not a pet research project. It is used in the well-established Materials Project. It is also actively being developed and maintained by the Materials Virtual Lab, the ABINIT group and many other research groups.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pymatgen-2022.1.9.tar.gz (3.0 MB view details)

Uploaded Source

Built Distributions

pymatgen-2022.1.9-cp310-cp310-win_amd64.whl (3.0 MB view details)

Uploaded CPython 3.10 Windows x86-64

pymatgen-2022.1.9-cp310-cp310-macosx_10_14_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.10 macOS 10.14+ x86-64

pymatgen-2022.1.9-cp39-cp39-win_amd64.whl (3.0 MB view details)

Uploaded CPython 3.9 Windows x86-64

pymatgen-2022.1.9-cp39-cp39-macosx_10_14_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

pymatgen-2022.1.9-cp38-cp38-win_amd64.whl (3.0 MB view details)

Uploaded CPython 3.8 Windows x86-64

pymatgen-2022.1.9-cp38-cp38-macosx_10_14_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

File details

Details for the file pymatgen-2022.1.9.tar.gz.

File metadata

  • Download URL: pymatgen-2022.1.9.tar.gz
  • Upload date:
  • Size: 3.0 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.9.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for pymatgen-2022.1.9.tar.gz
Algorithm Hash digest
SHA256 89774c0d87a38dc2f5d4d0148091f6aa240b3633121745826de66867e8d8ecc8
MD5 52d6be3fee9e22401fec801c085f1471
BLAKE2b-256 27480976738e1410d73bf788653984c48555c2f3157935866d5ae1ebfb08b8a2

See more details on using hashes here.

File details

Details for the file pymatgen-2022.1.9-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: pymatgen-2022.1.9-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 3.0 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.1

File hashes

Hashes for pymatgen-2022.1.9-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 76781b7034783331ddc953099f6dc7db2fc7b815744529d46c77955de1ee2fff
MD5 84ae2f64c3106943c84fdebb4964a893
BLAKE2b-256 914528efc922c0de893d12f7b24927020d2c270977fba2b1ba74b7eb34f61332

See more details on using hashes here.

File details

Details for the file pymatgen-2022.1.9-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: pymatgen-2022.1.9-cp310-cp310-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 3.1 MB
  • Tags: CPython 3.10, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.0

File hashes

Hashes for pymatgen-2022.1.9-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 0f9e6594c05fd2c2a9b23eeeb205bc3961b36aeec2e6b0187d3dfe28fa153d06
MD5 ae5da6e9ceaeef3056d908bfec7620e7
BLAKE2b-256 b54ae9420e3fc163093f7744551502850f192e890b9cec3ebbede0b73d61104c

See more details on using hashes here.

File details

Details for the file pymatgen-2022.1.9-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pymatgen-2022.1.9-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 3.0 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for pymatgen-2022.1.9-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 34d90b5d55b7ad33f036d2741b21ec0d160e8dc858821f14763857e9a92ff22c
MD5 79e76b34301ee53fd0f5bb558e6d5fdb
BLAKE2b-256 1a1f65a060ff7aa1fac17207ab9169bb2577613399da59b9771fa931811774ea

See more details on using hashes here.

File details

Details for the file pymatgen-2022.1.9-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: pymatgen-2022.1.9-cp39-cp39-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 3.1 MB
  • Tags: CPython 3.9, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for pymatgen-2022.1.9-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 883ba288a70cd607b3f0551c7c0b96ff14e67e9d1af1c987c8cde1f5638dc641
MD5 2a586f6ee3d167d257d7f21b3b6aa5c9
BLAKE2b-256 03dc35a3bad1ecd5ed72c95a694f5fbf610eb6ac8386e56201ea716eef1b2444

See more details on using hashes here.

File details

Details for the file pymatgen-2022.1.9-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: pymatgen-2022.1.9-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 3.0 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for pymatgen-2022.1.9-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 bf9255be70085d5e6b6b41e67b355b5387365831b35b1d6c969492872449fab7
MD5 4ed8d8cc3479d1d8768d488d043a18bb
BLAKE2b-256 a20ce285c9e78b88a4e8edf33a200c734cfd734d1da520a3aebd9d5d3e429494

See more details on using hashes here.

File details

Details for the file pymatgen-2022.1.9-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: pymatgen-2022.1.9-cp38-cp38-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 3.0 MB
  • Tags: CPython 3.8, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for pymatgen-2022.1.9-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 267e01aaeddb150ea0e13138b50711d2ebfeda6f1f78e59ccbd6cc92937ce5b3
MD5 9335e9abb26a64c22da3ec3ba58bde3d
BLAKE2b-256 92082e8d247011d4620bc6aa4eb74264e55b27efd430d9775b050be4eee71e5a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page