Skip to main content

Python Materials Genomics is a robust materials analysis code that defines core object representations for structures and molecules with support for many electronic structure codes. It is currently the core analysis code powering the Materials Project (https://www.materialsproject.org).

Project description

Official docs: https://pymatgen.org

Pymatgen (Python Materials Genomics) is a robust, open-source Python library for materials analysis. These are some of the main features:

  1. Highly flexible classes for the representation of Element, Site, Molecule, Structure objects.
  2. Extensive input/output support, including support for VASP, ABINIT, CIF, Gaussian, XYZ, and many other file formats.
  3. Powerful analysis tools, including generation of phase diagrams, Pourbaix diagrams, diffusion analyses, reactions, etc.
  4. Electronic structure analyses, such as density of states and band structure.
  5. Integration with the Materials Project REST API.

Pymatgen is free to use. However, we also welcome your help to improve this library by making your own contributions. These contributions can be in the form of additional tools or modules you develop, or feature requests and bug reports. Please report any bugs and issues at pymatgen's [Github page] (https://github.com/materialsproject/pymatgen). For help with any pymatgen issues, please use the Discourse page.

Why use pymatgen?

There are many materials analysis codes out there, both commerical and free, but pymatgen offer several advantages:

  1. It is (fairly) robust. Pymatgen is used by thousands of researchers, and is the analysis code powering the Materials Project. The analysis it produces survives rigorous scrutiny every single day. Bugs tend to be found and corrected quickly. Pymatgen also uses CircleCI and Appveyor for continuous integration on the Linux and Windows platforms, respectively, which ensures that every commit passes a comprehensive suite of unittests.
  2. It is well documented. A fairly comprehensive documentation has been written to help you get to grips with it quickly.
  3. It is open. You are free to use and contribute to pymatgen. It also means that pymatgen is continuously being improved. We will attribute any code you contribute to any publication you specify. Contributing to pymatgen means your research becomes more visible, which translates to greater impact.
  4. It is fast. Many of the core numerical methods in pymatgen have been optimized by vectorizing in numpy/scipy. This means that coordinate manipulations are extremely fast and are in fact comparable to codes written in other languages. Pymatgen also comes with a complete system for handling periodic boundary conditions.
  5. It will be around. Pymatgen is not a pet research project. It is used in the well-established Materials Project. It is also actively being developed and maintained by the Materials Virtual Lab, the ABINIT group and many other research groups.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pymatgen-2022.2.1.tar.gz (2.6 MB view details)

Uploaded Source

Built Distributions

pymatgen-2022.2.1-cp310-cp310-win_amd64.whl (3.0 MB view details)

Uploaded CPython 3.10 Windows x86-64

pymatgen-2022.2.1-cp310-cp310-macosx_10_15_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.10 macOS 10.15+ x86-64

pymatgen-2022.2.1-cp39-cp39-win_amd64.whl (3.0 MB view details)

Uploaded CPython 3.9 Windows x86-64

pymatgen-2022.2.1-cp39-cp39-macosx_11_0_arm64.whl (3.0 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pymatgen-2022.2.1-cp39-cp39-macosx_10_15_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.9 macOS 10.15+ x86-64

pymatgen-2022.2.1-cp38-cp38-win_amd64.whl (3.0 MB view details)

Uploaded CPython 3.8 Windows x86-64

pymatgen-2022.2.1-cp38-cp38-macosx_10_14_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

File details

Details for the file pymatgen-2022.2.1.tar.gz.

File metadata

  • Download URL: pymatgen-2022.2.1.tar.gz
  • Upload date:
  • Size: 2.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.9.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for pymatgen-2022.2.1.tar.gz
Algorithm Hash digest
SHA256 43950d7bbebc303a8da918f290557851ec1e96f8803533b74ca714df44438d66
MD5 2e3a0740971156b50c91ca51de392ae8
BLAKE2b-256 887d09887a827c4b44490a82d4101996928e425c8567f114d179561c5752e083

See more details on using hashes here.

File details

Details for the file pymatgen-2022.2.1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: pymatgen-2022.2.1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 3.0 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.1

File hashes

Hashes for pymatgen-2022.2.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 c58772986911c551c98647931e09524719fb732fd1b56c48e3f208d2da2230a3
MD5 581d7d825e123d9206c71496aebef376
BLAKE2b-256 fc8e4c6c6144f8a76457bd6798c6559891d51a32c8222289b50018ba1a8b330a

See more details on using hashes here.

File details

Details for the file pymatgen-2022.2.1-cp310-cp310-macosx_10_15_x86_64.whl.

File metadata

  • Download URL: pymatgen-2022.2.1-cp310-cp310-macosx_10_15_x86_64.whl
  • Upload date:
  • Size: 3.1 MB
  • Tags: CPython 3.10, macOS 10.15+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.2

File hashes

Hashes for pymatgen-2022.2.1-cp310-cp310-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 b5da40de31970726de1f7ac071dea70490e79bcf487596d00edc2c1109e3d309
MD5 a8aec0cdfd2817bdac7264c67b50c8ce
BLAKE2b-256 9e83f0ea827f979ef058babaeb025d0de4e84d123b995422502e1b78539fce55

See more details on using hashes here.

File details

Details for the file pymatgen-2022.2.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pymatgen-2022.2.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 3.0 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for pymatgen-2022.2.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 4347d726d9b36863d49cc912bcb8e2b2dbd3a073e4d95262c41c1189fa0bf4eb
MD5 355011b0f2916c4f2c280f327548ff29
BLAKE2b-256 e219237df4e56938c1fd8c31f9e1351527bbf06c1e368a8567100a1e963ae323

See more details on using hashes here.

File details

Details for the file pymatgen-2022.2.1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

  • Download URL: pymatgen-2022.2.1-cp39-cp39-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 3.0 MB
  • Tags: CPython 3.9, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.9.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for pymatgen-2022.2.1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4302e9ac6b9ca8e2bd7eb09bcdf346f26d421224368fac83bb53a384968a9898
MD5 691e2c33067ffe67f880c60b76f9dcfd
BLAKE2b-256 a0f7b8aa25109b78a5091e264710f758828f9a4a99c4f7dd0be4e2bc5623b2b6

See more details on using hashes here.

File details

Details for the file pymatgen-2022.2.1-cp39-cp39-macosx_10_15_x86_64.whl.

File metadata

  • Download URL: pymatgen-2022.2.1-cp39-cp39-macosx_10_15_x86_64.whl
  • Upload date:
  • Size: 3.1 MB
  • Tags: CPython 3.9, macOS 10.15+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.10

File hashes

Hashes for pymatgen-2022.2.1-cp39-cp39-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 92e0100021a04af3d1954d7227f482d5385dfbdbb46e33e1eaaf5f229cac05bb
MD5 7a1147547ef4cdea357160c9c80befb8
BLAKE2b-256 005b085bf59e89ffcbce14e0ad89155ff18afe7f97e36879fb8677912448c712

See more details on using hashes here.

File details

Details for the file pymatgen-2022.2.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: pymatgen-2022.2.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 3.0 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for pymatgen-2022.2.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 e2d162d41cc184263d002ed87f8734f9acfd6f4d7eed06bd02533952dde24b28
MD5 e9c892054d02a181b007c69c0a7d49d3
BLAKE2b-256 c1878165bc1a0742601dba61e8b99deed59b0e2a3398a7a56c43b1decc43a4b4

See more details on using hashes here.

File details

Details for the file pymatgen-2022.2.1-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: pymatgen-2022.2.1-cp38-cp38-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 3.1 MB
  • Tags: CPython 3.8, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for pymatgen-2022.2.1-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 f4fc07586d0259a47695b6264e41fda7ee506614ff940ba06f36eb06ebc1464a
MD5 d7624920d81029c269b733b348958e14
BLAKE2b-256 a12e2d8aa246701a2ff03ace78274ea77be3db323c716cb100e34b58c1d3d1c9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page