Skip to main content

Python Materials Genomics is a robust materials analysis code that defines core object representations for structures and molecules with support for many electronic structure codes. It is currently the core analysis code powering the Materials Project (https://www.materialsproject.org).

Project description

Official docs: https://pymatgen.org

Pymatgen (Python Materials Genomics) is a robust, open-source Python library for materials analysis. These are some of the main features:

  1. Highly flexible classes for the representation of Element, Site, Molecule, Structure objects.
  2. Extensive input/output support, including support for VASP, ABINIT, CIF, Gaussian, XYZ, and many other file formats.
  3. Powerful analysis tools, including generation of phase diagrams, Pourbaix diagrams, diffusion analyses, reactions, etc.
  4. Electronic structure analyses, such as density of states and band structure.
  5. Integration with the Materials Project REST API.

Pymatgen is free to use. However, we also welcome your help to improve this library by making your own contributions. These contributions can be in the form of additional tools or modules you develop, or feature requests and bug reports. Please report any bugs and issues at pymatgen's [Github page] (https://github.com/materialsproject/pymatgen). For help with any pymatgen issues, please use the Discourse page.

Why use pymatgen?

There are many materials analysis codes out there, both commerical and free, but pymatgen offer several advantages:

  1. It is (fairly) robust. Pymatgen is used by thousands of researchers, and is the analysis code powering the Materials Project. The analysis it produces survives rigorous scrutiny every single day. Bugs tend to be found and corrected quickly. Pymatgen also uses CircleCI and Appveyor for continuous integration on the Linux and Windows platforms, respectively, which ensures that every commit passes a comprehensive suite of unittests.
  2. It is well documented. A fairly comprehensive documentation has been written to help you get to grips with it quickly.
  3. It is open. You are free to use and contribute to pymatgen. It also means that pymatgen is continuously being improved. We will attribute any code you contribute to any publication you specify. Contributing to pymatgen means your research becomes more visible, which translates to greater impact.
  4. It is fast. Many of the core numerical methods in pymatgen have been optimized by vectorizing in numpy/scipy. This means that coordinate manipulations are extremely fast and are in fact comparable to codes written in other languages. Pymatgen also comes with a complete system for handling periodic boundary conditions.
  5. It will be around. Pymatgen is not a pet research project. It is used in the well-established Materials Project. It is also actively being developed and maintained by the Materials Virtual Lab, the ABINIT group and many other research groups.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pymatgen-2022.2.10.tar.gz (2.6 MB view details)

Uploaded Source

Built Distributions

pymatgen-2022.2.10-cp310-cp310-win_amd64.whl (3.0 MB view details)

Uploaded CPython 3.10 Windows x86-64

pymatgen-2022.2.10-cp310-cp310-macosx_10_15_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.10 macOS 10.15+ x86-64

pymatgen-2022.2.10-cp39-cp39-win_amd64.whl (3.0 MB view details)

Uploaded CPython 3.9 Windows x86-64

pymatgen-2022.2.10-cp39-cp39-macosx_11_0_arm64.whl (3.0 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pymatgen-2022.2.10-cp39-cp39-macosx_10_15_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.9 macOS 10.15+ x86-64

pymatgen-2022.2.10-cp38-cp38-win_amd64.whl (3.0 MB view details)

Uploaded CPython 3.8 Windows x86-64

pymatgen-2022.2.10-cp38-cp38-macosx_10_14_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

File details

Details for the file pymatgen-2022.2.10.tar.gz.

File metadata

  • Download URL: pymatgen-2022.2.10.tar.gz
  • Upload date:
  • Size: 2.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.26.0 requests-toolbelt/0.9.1 urllib3/1.26.7 tqdm/4.62.3 importlib-metadata/4.9.0 keyring/23.4.0 rfc3986/1.5.0 colorama/0.4.4 CPython/3.9.7

File hashes

Hashes for pymatgen-2022.2.10.tar.gz
Algorithm Hash digest
SHA256 1646f681037f302a9658fa100da4da6f46bfc08c6077d59ae06239c7afbe0afe
MD5 2224aef51af5e213232e934ccc6c1d7e
BLAKE2b-256 ebf49c167db7bdbd6c47d269dcba85ed1f311d1c5ec7020af0da0fac5565e91f

See more details on using hashes here.

File details

Details for the file pymatgen-2022.2.10-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: pymatgen-2022.2.10-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 3.0 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.26.0 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.10.1

File hashes

Hashes for pymatgen-2022.2.10-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 55b448aed17f74012f3f83b95f4a89ddb9c369871062224d2a2e2f51188b5f15
MD5 fb5cee89c3ea587069f9f4dd724d0d08
BLAKE2b-256 1027614f215d3334875c40dd5fc36bca2e6a926c5231fd85ff38021899224ec6

See more details on using hashes here.

File details

Details for the file pymatgen-2022.2.10-cp310-cp310-macosx_10_15_x86_64.whl.

File metadata

  • Download URL: pymatgen-2022.2.10-cp310-cp310-macosx_10_15_x86_64.whl
  • Upload date:
  • Size: 3.1 MB
  • Tags: CPython 3.10, macOS 10.15+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.26.0 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.10.2

File hashes

Hashes for pymatgen-2022.2.10-cp310-cp310-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 2f9c171a61de6c84f48467fc53945df78e3b274b79891e532c3517e0991e9b03
MD5 7db9578f4ffd96030bfcb23e338b3bee
BLAKE2b-256 18eab46ac1352e47db3ac1f4ce0eacb8b0bc13670ec314d309d9b4dcee1b1005

See more details on using hashes here.

File details

Details for the file pymatgen-2022.2.10-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pymatgen-2022.2.10-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 3.0 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.26.0 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.9

File hashes

Hashes for pymatgen-2022.2.10-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 f21072fdf96b06d6c008d51d348d221876f4159ea06a690aa2ef385160574ab5
MD5 efa96438f1ccb84f998c4b6655eb1835
BLAKE2b-256 99fc4ff5df2bbf5be7d727d9231ef030dea7f3e5e5cd8a06695d32cd87081f09

See more details on using hashes here.

File details

Details for the file pymatgen-2022.2.10-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

  • Download URL: pymatgen-2022.2.10-cp39-cp39-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 3.0 MB
  • Tags: CPython 3.9, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.26.0 requests-toolbelt/0.9.1 urllib3/1.26.7 tqdm/4.62.3 importlib-metadata/4.9.0 keyring/23.4.0 rfc3986/1.5.0 colorama/0.4.4 CPython/3.9.7

File hashes

Hashes for pymatgen-2022.2.10-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d6fed4eb5b712fd37abe6cf54bb98532fb08e474ee3abc83e4f2704b7ef044f3
MD5 b32b248c950249f686fec4d953e20805
BLAKE2b-256 83f0d11cb2731af8c8c82bc0a548a8347c8ae6c1d5f9478d5557c78d6c181851

See more details on using hashes here.

File details

Details for the file pymatgen-2022.2.10-cp39-cp39-macosx_10_15_x86_64.whl.

File metadata

  • Download URL: pymatgen-2022.2.10-cp39-cp39-macosx_10_15_x86_64.whl
  • Upload date:
  • Size: 3.1 MB
  • Tags: CPython 3.9, macOS 10.15+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.26.0 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for pymatgen-2022.2.10-cp39-cp39-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 4d0c2d5e670eb297d2994161f9035c1d75abda32d6a954db22706631c3af5b07
MD5 001cbd97903086da6755346f3fce68c2
BLAKE2b-256 2efbf54fcfc980a7647148f245321c4230a217ee38fad7f8bfecf1d2129dc7e5

See more details on using hashes here.

File details

Details for the file pymatgen-2022.2.10-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: pymatgen-2022.2.10-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 3.0 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.26.0 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.8.10

File hashes

Hashes for pymatgen-2022.2.10-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 585de1d42becc330105f32679075b1f9851cfc5af9b5487cfc00ab71637bd53e
MD5 5f3ea7cf8b03eb86dad5019ecdcb019b
BLAKE2b-256 30eade19ce6fa0a2030d8984f3895e7cadf5790f589e3dda2fbb94d5c55f4b44

See more details on using hashes here.

File details

Details for the file pymatgen-2022.2.10-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: pymatgen-2022.2.10-cp38-cp38-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 3.1 MB
  • Tags: CPython 3.8, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.26.0 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.8.12

File hashes

Hashes for pymatgen-2022.2.10-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 1a4ccd53b0421e2ad3c63f34ffa8661de7c75c1a5dc1e6da32eecba36cd83966
MD5 894332a0c38ec9152352d13ae269a39b
BLAKE2b-256 d789933e2897ecd94219041cf5af2916ba3a99107b6a9679ee15eefe6360a2ef

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page