Skip to main content

Python Materials Genomics is a robust materials analysis code that defines core object representations for structures and molecules with support for many electronic structure codes. It is currently the core analysis code powering the Materials Project (https://www.materialsproject.org).

Project description

Official docs: https://pymatgen.org

Pymatgen (Python Materials Genomics) is a robust, open-source Python library for materials analysis. These are some of the main features:

  1. Highly flexible classes for the representation of Element, Site, Molecule, Structure objects.
  2. Extensive input/output support, including support for VASP, ABINIT, CIF, Gaussian, XYZ, and many other file formats.
  3. Powerful analysis tools, including generation of phase diagrams, Pourbaix diagrams, diffusion analyses, reactions, etc.
  4. Electronic structure analyses, such as density of states and band structure.
  5. Integration with the Materials Project REST API.

Pymatgen is free to use. However, we also welcome your help to improve this library by making your own contributions. These contributions can be in the form of additional tools or modules you develop, or feature requests and bug reports. Please report any bugs and issues at pymatgen's [Github page] (https://github.com/materialsproject/pymatgen). For help with any pymatgen issues, please use the Discourse page.

Why use pymatgen?

There are many materials analysis codes out there, both commerical and free, but pymatgen offer several advantages:

  1. It is (fairly) robust. Pymatgen is used by thousands of researchers, and is the analysis code powering the Materials Project. The analysis it produces survives rigorous scrutiny every single day. Bugs tend to be found and corrected quickly. Pymatgen also uses CircleCI and Appveyor for continuous integration on the Linux and Windows platforms, respectively, which ensures that every commit passes a comprehensive suite of unittests.
  2. It is well documented. A fairly comprehensive documentation has been written to help you get to grips with it quickly.
  3. It is open. You are free to use and contribute to pymatgen. It also means that pymatgen is continuously being improved. We will attribute any code you contribute to any publication you specify. Contributing to pymatgen means your research becomes more visible, which translates to greater impact.
  4. It is fast. Many of the core numerical methods in pymatgen have been optimized by vectorizing in numpy/scipy. This means that coordinate manipulations are extremely fast and are in fact comparable to codes written in other languages. Pymatgen also comes with a complete system for handling periodic boundary conditions.
  5. It will be around. Pymatgen is not a pet research project. It is used in the well-established Materials Project. It is also actively being developed and maintained by the Materials Virtual Lab, the ABINIT group and many other research groups.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pymatgen-2022.2.7.tar.gz (2.6 MB view details)

Uploaded Source

Built Distributions

pymatgen-2022.2.7-cp310-cp310-win_amd64.whl (3.0 MB view details)

Uploaded CPython 3.10 Windows x86-64

pymatgen-2022.2.7-cp310-cp310-macosx_10_15_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.10 macOS 10.15+ x86-64

pymatgen-2022.2.7-cp39-cp39-win_amd64.whl (3.0 MB view details)

Uploaded CPython 3.9 Windows x86-64

pymatgen-2022.2.7-cp39-cp39-macosx_11_0_arm64.whl (3.0 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pymatgen-2022.2.7-cp39-cp39-macosx_10_15_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.9 macOS 10.15+ x86-64

pymatgen-2022.2.7-cp38-cp38-win_amd64.whl (3.0 MB view details)

Uploaded CPython 3.8 Windows x86-64

pymatgen-2022.2.7-cp38-cp38-macosx_10_14_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

File details

Details for the file pymatgen-2022.2.7.tar.gz.

File metadata

  • Download URL: pymatgen-2022.2.7.tar.gz
  • Upload date:
  • Size: 2.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.26.0 requests-toolbelt/0.9.1 urllib3/1.26.7 tqdm/4.62.3 importlib-metadata/4.9.0 keyring/23.4.0 rfc3986/1.5.0 colorama/0.4.4 CPython/3.9.7

File hashes

Hashes for pymatgen-2022.2.7.tar.gz
Algorithm Hash digest
SHA256 882dbafade524beca9fbc472399c28ccc8054322cb081101aec39923304ceb69
MD5 bb239bbc3bdaddfaccff6c4736d5faa0
BLAKE2b-256 00ebfc120e9c0d006788015cff8a6e8650bce18e23c5f24811f7a71f1ffab01b

See more details on using hashes here.

File details

Details for the file pymatgen-2022.2.7-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: pymatgen-2022.2.7-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 3.0 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.26.0 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.10.1

File hashes

Hashes for pymatgen-2022.2.7-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 fe1c2e715c3c534ef518dcb97cad37b4e3e09b4c60b3b105883f8e35c090e1f8
MD5 58e32cd83a29af1d64aa5fe870cefc2c
BLAKE2b-256 8bdce2c1c000b0ae3e1123259da8010a72857f1bd29aea6fdedcc8f3f24dc855

See more details on using hashes here.

File details

Details for the file pymatgen-2022.2.7-cp310-cp310-macosx_10_15_x86_64.whl.

File metadata

  • Download URL: pymatgen-2022.2.7-cp310-cp310-macosx_10_15_x86_64.whl
  • Upload date:
  • Size: 3.1 MB
  • Tags: CPython 3.10, macOS 10.15+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.26.0 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.10.2

File hashes

Hashes for pymatgen-2022.2.7-cp310-cp310-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 e912255236ce2bc72a2868541b16e64014c7962a7ad12930802d059c83595358
MD5 c1a3cd82479d93a67096b79445a5d193
BLAKE2b-256 d680f1890805eaab608f0b600790cf600f82427877482ac305357c7039b03a59

See more details on using hashes here.

File details

Details for the file pymatgen-2022.2.7-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pymatgen-2022.2.7-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 3.0 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.26.0 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.9

File hashes

Hashes for pymatgen-2022.2.7-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 21d1337dff4d6d7be222c8b2a96d8e04582e993e8eb78bf93a6f7ab82f7b1583
MD5 468ffea82c7879cae04eb362ca291df7
BLAKE2b-256 c7c402146e8b934c6aae5e950144a0b9e1a63663e2299e2610e2504a8d338d5a

See more details on using hashes here.

File details

Details for the file pymatgen-2022.2.7-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

  • Download URL: pymatgen-2022.2.7-cp39-cp39-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 3.0 MB
  • Tags: CPython 3.9, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.26.0 requests-toolbelt/0.9.1 urllib3/1.26.7 tqdm/4.62.3 importlib-metadata/4.9.0 keyring/23.4.0 rfc3986/1.5.0 colorama/0.4.4 CPython/3.9.7

File hashes

Hashes for pymatgen-2022.2.7-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ec7bf89fd78eeeada36a0651381ef70d69bf4722f12fbd12542d6169bc0b3aba
MD5 08662dafbc4e6fa2e17a376a514ddb9d
BLAKE2b-256 392dd8923b39a7e635a4f2133f78e61dc2d53c33d516c1a0de38b9f3c294641a

See more details on using hashes here.

File details

Details for the file pymatgen-2022.2.7-cp39-cp39-macosx_10_15_x86_64.whl.

File metadata

  • Download URL: pymatgen-2022.2.7-cp39-cp39-macosx_10_15_x86_64.whl
  • Upload date:
  • Size: 3.1 MB
  • Tags: CPython 3.9, macOS 10.15+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.26.0 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for pymatgen-2022.2.7-cp39-cp39-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 bea829bec619ea320b8d03ec1d1783efc21d074a65b3f339ab07058358dff901
MD5 39013326016b4ddce6fcb96947d65ea3
BLAKE2b-256 71c00eb34b2cd86fe885f1cc9dee30c0a4e36458b423cb5d73d394cf1a0ce05f

See more details on using hashes here.

File details

Details for the file pymatgen-2022.2.7-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: pymatgen-2022.2.7-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 3.0 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.26.0 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.8.10

File hashes

Hashes for pymatgen-2022.2.7-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 aa5cd42a660e4264d1182161f8e3a073862e7a863afe61425859aedfc686388a
MD5 2ae27c5d4822cfb7d942583a3b8956d5
BLAKE2b-256 29f708bd7fa5871a64cf371142852c839e96a249fe9fedcadf0db6f74cc6db4a

See more details on using hashes here.

File details

Details for the file pymatgen-2022.2.7-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: pymatgen-2022.2.7-cp38-cp38-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 3.1 MB
  • Tags: CPython 3.8, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.26.0 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.8.12

File hashes

Hashes for pymatgen-2022.2.7-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 544a0c8913ce8453ff80aa9d9886238d118cf53c166a4cc21aeba12775dfda3f
MD5 b199cbdc0abe8fd6151888da7b5c7c1e
BLAKE2b-256 71ddab653e916b889e4b7370578682a65ce555523a4d2f2fb7975b831c095cc4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page