Skip to main content

Python Materials Genomics is a robust materials analysis code that defines core object representations for structures and molecules with support for many electronic structure codes. It is currently the core analysis code powering the Materials Project (https://www.materialsproject.org).

Project description

Official docs: https://pymatgen.org

Pymatgen (Python Materials Genomics) is a robust, open-source Python library for materials analysis. These are some of the main features:

  1. Highly flexible classes for the representation of Element, Site, Molecule, Structure objects.
  2. Extensive input/output support, including support for VASP, ABINIT, CIF, Gaussian, XYZ, and many other file formats.
  3. Powerful analysis tools, including generation of phase diagrams, Pourbaix diagrams, diffusion analyses, reactions, etc.
  4. Electronic structure analyses, such as density of states and band structure.
  5. Integration with the Materials Project REST API.

Pymatgen is free to use. However, we also welcome your help to improve this library by making your own contributions. These contributions can be in the form of additional tools or modules you develop, or feature requests and bug reports. Please report any bugs and issues at pymatgen's [Github page] (https://github.com/materialsproject/pymatgen). For help with any pymatgen issues, please use the Discourse page.

Why use pymatgen?

There are many materials analysis codes out there, both commerical and free, but pymatgen offer several advantages:

  1. It is (fairly) robust. Pymatgen is used by thousands of researchers, and is the analysis code powering the Materials Project. The analysis it produces survives rigorous scrutiny every single day. Bugs tend to be found and corrected quickly. Pymatgen also uses CircleCI and Appveyor for continuous integration on the Linux and Windows platforms, respectively, which ensures that every commit passes a comprehensive suite of unittests.
  2. It is well documented. A fairly comprehensive documentation has been written to help you get to grips with it quickly.
  3. It is open. You are free to use and contribute to pymatgen. It also means that pymatgen is continuously being improved. We will attribute any code you contribute to any publication you specify. Contributing to pymatgen means your research becomes more visible, which translates to greater impact.
  4. It is fast. Many of the core numerical methods in pymatgen have been optimized by vectorizing in numpy/scipy. This means that coordinate manipulations are extremely fast and are in fact comparable to codes written in other languages. Pymatgen also comes with a complete system for handling periodic boundary conditions.
  5. It will be around. Pymatgen is not a pet research project. It is used in the well-established Materials Project. It is also actively being developed and maintained by the Materials Virtual Lab, the ABINIT group and many other research groups.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pymatgen-2022.3.29.tar.gz (2.6 MB view details)

Uploaded Source

Built Distributions

pymatgen-2022.3.29-cp310-cp310-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.10 Windows x86-64

pymatgen-2022.3.29-cp310-cp310-macosx_10_15_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.10 macOS 10.15+ x86-64

pymatgen-2022.3.29-cp39-cp39-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.9 Windows x86-64

pymatgen-2022.3.29-cp39-cp39-macosx_10_15_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.9 macOS 10.15+ x86-64

pymatgen-2022.3.29-cp38-cp38-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.8 Windows x86-64

pymatgen-2022.3.29-cp38-cp38-macosx_10_14_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

File details

Details for the file pymatgen-2022.3.29.tar.gz.

File metadata

  • Download URL: pymatgen-2022.3.29.tar.gz
  • Upload date:
  • Size: 2.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.26.0 requests-toolbelt/0.9.1 urllib3/1.26.9 tqdm/4.63.0 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.11

File hashes

Hashes for pymatgen-2022.3.29.tar.gz
Algorithm Hash digest
SHA256 7da740a99fe61d78b0adfa70d0e902d5f5525148eeb1297eae9c4f6ff98014d2
MD5 1ca9753621c68f2f041e1f2255107cf4
BLAKE2b-256 912af08e7c5dd446d43e2f989059ba8a68bda0f13eb2f977cec695c42d9815a4

See more details on using hashes here.

File details

Details for the file pymatgen-2022.3.29-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: pymatgen-2022.3.29-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 3.1 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.26.0 requests-toolbelt/0.9.1 urllib3/1.26.9 tqdm/4.63.0 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.10.2

File hashes

Hashes for pymatgen-2022.3.29-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 7aa2a0e2126d9b5148ae321e811bbaa0d2f995d8892ce0c146a327d483bd189d
MD5 a9cede81c0561c5cfd01b0f7bf9819d9
BLAKE2b-256 714ab5e02df93a96d34a96408ed94b544a8b98760124d795a2de6e576c85ca93

See more details on using hashes here.

File details

Details for the file pymatgen-2022.3.29-cp310-cp310-macosx_10_15_x86_64.whl.

File metadata

  • Download URL: pymatgen-2022.3.29-cp310-cp310-macosx_10_15_x86_64.whl
  • Upload date:
  • Size: 3.1 MB
  • Tags: CPython 3.10, macOS 10.15+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.26.0 requests-toolbelt/0.9.1 urllib3/1.26.9 tqdm/4.63.0 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.10.3

File hashes

Hashes for pymatgen-2022.3.29-cp310-cp310-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 d98a8309b30fb62da7af6706b526f55932b1fd87e25ce72a94a30e4e8901c53f
MD5 7ce6376d95e1d51ebae0a7c754bfb4c3
BLAKE2b-256 2a3547b1676c016b16843968807bc9549b75aee99a29259e2c086608985b3938

See more details on using hashes here.

File details

Details for the file pymatgen-2022.3.29-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pymatgen-2022.3.29-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 3.1 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.26.0 requests-toolbelt/0.9.1 urllib3/1.26.9 tqdm/4.63.0 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for pymatgen-2022.3.29-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 35ef2d52e35135ea6ae7ddab7461ca53a16b7d8e4b94e657161936e05dab21cb
MD5 970db304418c6eea4f29d6f4a5d0b6f9
BLAKE2b-256 b7627fc34ee8cbb3c1b7f11812ca6c93b224815f9050f80d67ae1b638fac491e

See more details on using hashes here.

File details

Details for the file pymatgen-2022.3.29-cp39-cp39-macosx_10_15_x86_64.whl.

File metadata

  • Download URL: pymatgen-2022.3.29-cp39-cp39-macosx_10_15_x86_64.whl
  • Upload date:
  • Size: 3.1 MB
  • Tags: CPython 3.9, macOS 10.15+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.26.0 requests-toolbelt/0.9.1 urllib3/1.26.9 tqdm/4.63.0 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.11

File hashes

Hashes for pymatgen-2022.3.29-cp39-cp39-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 623a990701863156c31bcb7d47a172244182f697156604959fd702c8679c53e6
MD5 a24bd2b97eeb60192d8f948ed55af018
BLAKE2b-256 816768d47f8a88cb2fd78632c71ce4a840fa84ec6d994b21b9a15cab4b031f88

See more details on using hashes here.

File details

Details for the file pymatgen-2022.3.29-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: pymatgen-2022.3.29-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 3.1 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.26.0 requests-toolbelt/0.9.1 urllib3/1.26.9 tqdm/4.63.0 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.8.10

File hashes

Hashes for pymatgen-2022.3.29-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 c5f789d03618cd5fd9d03a47ad932730b57f8a28510bcb100752241c54c53296
MD5 ad0414612f546788d8cbe1e57b764959
BLAKE2b-256 9e4262ab722faaef98812b136599828260a20ec03ad363008246401875d3fa19

See more details on using hashes here.

File details

Details for the file pymatgen-2022.3.29-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: pymatgen-2022.3.29-cp38-cp38-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 3.1 MB
  • Tags: CPython 3.8, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.26.0 requests-toolbelt/0.9.1 urllib3/1.26.9 tqdm/4.63.0 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.8.12

File hashes

Hashes for pymatgen-2022.3.29-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 3f1afcd127a7d9e9fa37b80db0c65465ab27e685f81de386cd554c7fad48a97b
MD5 7edb7496ec56e466d1898e62a8dfc3b2
BLAKE2b-256 c61f7c10c3d923ed61f5438ecdfa5518f9fdda8d065a077e135a61f4f5deaa9c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page