Skip to main content

Python Materials Genomics is a robust materials analysis code that defines core object representations for structures and molecules with support for many electronic structure codes. It is currently the core analysis code powering the Materials Project (https://www.materialsproject.org).

Project description

Official docs: https://pymatgen.org

Pymatgen (Python Materials Genomics) is a robust, open-source Python library for materials analysis. These are some of the main features:

  1. Highly flexible classes for the representation of Element, Site, Molecule, Structure objects.
  2. Extensive input/output support, including support for VASP, ABINIT, CIF, Gaussian, XYZ, and many other file formats.
  3. Powerful analysis tools, including generation of phase diagrams, Pourbaix diagrams, diffusion analyses, reactions, etc.
  4. Electronic structure analyses, such as density of states and band structure.
  5. Integration with the Materials Project REST API.

Pymatgen is free to use. However, we also welcome your help to improve this library by making your own contributions. These contributions can be in the form of additional tools or modules you develop, or feature requests and bug reports. Please report any bugs and issues at pymatgen's [Github page] (https://github.com/materialsproject/pymatgen). For help with any pymatgen issues, please use the Discourse page.

Why use pymatgen?

There are many materials analysis codes out there, both commerical and free, but pymatgen offer several advantages:

  1. It is (fairly) robust. Pymatgen is used by thousands of researchers, and is the analysis code powering the Materials Project. The analysis it produces survives rigorous scrutiny every single day. Bugs tend to be found and corrected quickly. Pymatgen also uses CircleCI and Appveyor for continuous integration on the Linux and Windows platforms, respectively, which ensures that every commit passes a comprehensive suite of unittests.
  2. It is well documented. A fairly comprehensive documentation has been written to help you get to grips with it quickly.
  3. It is open. You are free to use and contribute to pymatgen. It also means that pymatgen is continuously being improved. We will attribute any code you contribute to any publication you specify. Contributing to pymatgen means your research becomes more visible, which translates to greater impact.
  4. It is fast. Many of the core numerical methods in pymatgen have been optimized by vectorizing in numpy/scipy. This means that coordinate manipulations are extremely fast and are in fact comparable to codes written in other languages. Pymatgen also comes with a complete system for handling periodic boundary conditions.
  5. It will be around. Pymatgen is not a pet research project. It is used in the well-established Materials Project. It is also actively being developed and maintained by the Materials Virtual Lab, the ABINIT group and many other research groups.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pymatgen-2022.3.7.tar.gz (2.6 MB view details)

Uploaded Source

Built Distributions

pymatgen-2022.3.7-cp310-cp310-win_amd64.whl (3.0 MB view details)

Uploaded CPython 3.10 Windows x86-64

pymatgen-2022.3.7-cp310-cp310-macosx_10_15_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.10 macOS 10.15+ x86-64

pymatgen-2022.3.7-cp39-cp39-win_amd64.whl (3.0 MB view details)

Uploaded CPython 3.9 Windows x86-64

pymatgen-2022.3.7-cp39-cp39-macosx_10_15_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.9 macOS 10.15+ x86-64

pymatgen-2022.3.7-cp38-cp38-win_amd64.whl (3.0 MB view details)

Uploaded CPython 3.8 Windows x86-64

pymatgen-2022.3.7-cp38-cp38-macosx_10_14_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

File details

Details for the file pymatgen-2022.3.7.tar.gz.

File metadata

  • Download URL: pymatgen-2022.3.7.tar.gz
  • Upload date:
  • Size: 2.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/33.0 requests/2.26.0 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.8.12

File hashes

Hashes for pymatgen-2022.3.7.tar.gz
Algorithm Hash digest
SHA256 51680e2ea4430b3c52fe970d4706f04960521647435e780536e6aa541c81d361
MD5 e3da3c2749373e4a1037a00acac2c544
BLAKE2b-256 50ffcac8afb4ceff2eb8877115bcd6fd09fe8afd553b6fd269376d6fe4fdd260

See more details on using hashes here.

File details

Details for the file pymatgen-2022.3.7-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: pymatgen-2022.3.7-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 3.0 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/33.0 requests/2.26.0 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.10.2

File hashes

Hashes for pymatgen-2022.3.7-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 b6866fb60ee2f4a482c50d7b5ad8bcf2702863aff00c8707cff510d4e7509b76
MD5 e57e470ffd5ee3b6adac056aa0754aed
BLAKE2b-256 e3de44d4051ab78b1ab37e39b203ad79ea654c74a77d9876d798177266635f8b

See more details on using hashes here.

File details

Details for the file pymatgen-2022.3.7-cp310-cp310-macosx_10_15_x86_64.whl.

File metadata

  • Download URL: pymatgen-2022.3.7-cp310-cp310-macosx_10_15_x86_64.whl
  • Upload date:
  • Size: 3.1 MB
  • Tags: CPython 3.10, macOS 10.15+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/33.0 requests/2.26.0 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.10.2

File hashes

Hashes for pymatgen-2022.3.7-cp310-cp310-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 24551fe97f200daa101ec0b6eb96f251d7f490510ea4594792e2bf38420040de
MD5 401bed187b99612fb79145f3497b9ec8
BLAKE2b-256 d6f04067f5931fa4186995b1f0cb57b83f8316c7c30651a77c2d947c4ef4565f

See more details on using hashes here.

File details

Details for the file pymatgen-2022.3.7-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pymatgen-2022.3.7-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 3.0 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/33.0 requests/2.26.0 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for pymatgen-2022.3.7-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 4064cd535369e188f01ba01c6a826b86a741a15a3353232fb5d3185407cdedc1
MD5 0da580d145119d96d36e6ba93efaacd9
BLAKE2b-256 14ec61d138340780adb8b56e7474dabfd5dbe2c2635262fc4bdd489efd2e2df3

See more details on using hashes here.

File details

Details for the file pymatgen-2022.3.7-cp39-cp39-macosx_10_15_x86_64.whl.

File metadata

  • Download URL: pymatgen-2022.3.7-cp39-cp39-macosx_10_15_x86_64.whl
  • Upload date:
  • Size: 3.1 MB
  • Tags: CPython 3.9, macOS 10.15+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/33.0 requests/2.26.0 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for pymatgen-2022.3.7-cp39-cp39-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 31e66657fd14f522c56172fe9ed36aa4455dd331871fa26319c300456cdf9248
MD5 a3139d513c691e51871c080f1917a885
BLAKE2b-256 9f5f7463bc015c9ed885c9ce875d56d41de7026f2f5208f475906b22c1257c30

See more details on using hashes here.

File details

Details for the file pymatgen-2022.3.7-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: pymatgen-2022.3.7-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 3.0 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/33.0 requests/2.26.0 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.8.10

File hashes

Hashes for pymatgen-2022.3.7-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 0849a26323a8d85c6267c354b6c3684e69ab12de8e5316b8eda63354d79ce6d9
MD5 593284d001950783dd45dc6a412e8653
BLAKE2b-256 4dad71e5f9c47405cb333c3a75662cb287969d98c580be343c32a76c32311ed6

See more details on using hashes here.

File details

Details for the file pymatgen-2022.3.7-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: pymatgen-2022.3.7-cp38-cp38-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 3.1 MB
  • Tags: CPython 3.8, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/33.0 requests/2.26.0 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.8.12

File hashes

Hashes for pymatgen-2022.3.7-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 0ca683ea37b1013b5c2565fe52e3b25cfd6a630167cf181f70292f0fced58570
MD5 1c5da49ef16f01d077dcca1a462c954b
BLAKE2b-256 22c82ba8705098ee36d810bae76ec53ec4d0ec32302336eefa5914519478f34a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page