Skip to main content

Python Materials Genomics is a robust materials analysis code that defines core object representations for structures and molecules with support for many electronic structure codes. It is currently the core analysis code powering the Materials Project (https://www.materialsproject.org).

Project description

Official docs: https://pymatgen.org

Pymatgen (Python Materials Genomics) is a robust, open-source Python library for materials analysis. These are some of the main features:

  1. Highly flexible classes for the representation of Element, Site, Molecule, Structure objects.
  2. Extensive input/output support, including support for VASP, ABINIT, CIF, Gaussian, XYZ, and many other file formats.
  3. Powerful analysis tools, including generation of phase diagrams, Pourbaix diagrams, diffusion analyses, reactions, etc.
  4. Electronic structure analyses, such as density of states and band structure.
  5. Integration with the Materials Project REST API.

Pymatgen is free to use. However, we also welcome your help to improve this library by making your own contributions. These contributions can be in the form of additional tools or modules you develop, or feature requests and bug reports. Please report any bugs and issues at pymatgen's [Github page] (https://github.com/materialsproject/pymatgen). For help with any pymatgen issues, please use the Discourse page.

Why use pymatgen?

There are many materials analysis codes out there, both commerical and free, but pymatgen offer several advantages:

  1. It is (fairly) robust. Pymatgen is used by thousands of researchers, and is the analysis code powering the Materials Project. The analysis it produces survives rigorous scrutiny every single day. Bugs tend to be found and corrected quickly. Pymatgen also uses CircleCI and Appveyor for continuous integration on the Linux and Windows platforms, respectively, which ensures that every commit passes a comprehensive suite of unittests.
  2. It is well documented. A fairly comprehensive documentation has been written to help you get to grips with it quickly.
  3. It is open. You are free to use and contribute to pymatgen. It also means that pymatgen is continuously being improved. We will attribute any code you contribute to any publication you specify. Contributing to pymatgen means your research becomes more visible, which translates to greater impact.
  4. It is fast. Many of the core numerical methods in pymatgen have been optimized by vectorizing in numpy/scipy. This means that coordinate manipulations are extremely fast and are in fact comparable to codes written in other languages. Pymatgen also comes with a complete system for handling periodic boundary conditions.
  5. It will be around. Pymatgen is not a pet research project. It is used in the well-established Materials Project. It is also actively being developed and maintained by the Materials Virtual Lab, the ABINIT group and many other research groups.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pymatgen-2022.4.19.tar.gz (2.6 MB view details)

Uploaded Source

Built Distributions

pymatgen-2022.4.19-cp310-cp310-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.10 Windows x86-64

pymatgen-2022.4.19-cp310-cp310-macosx_10_15_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.10 macOS 10.15+ x86-64

pymatgen-2022.4.19-cp39-cp39-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.9 Windows x86-64

pymatgen-2022.4.19-cp39-cp39-macosx_11_0_arm64.whl (3.0 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pymatgen-2022.4.19-cp39-cp39-macosx_10_15_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.9 macOS 10.15+ x86-64

pymatgen-2022.4.19-cp38-cp38-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.8 Windows x86-64

pymatgen-2022.4.19-cp38-cp38-macosx_10_14_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

File details

Details for the file pymatgen-2022.4.19.tar.gz.

File metadata

  • Download URL: pymatgen-2022.4.19.tar.gz
  • Upload date:
  • Size: 2.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.9.12

File hashes

Hashes for pymatgen-2022.4.19.tar.gz
Algorithm Hash digest
SHA256 5f892704c8b5ebad3d92dcf7c90b58eab56e0c28c0233d0f3b14820338434a4e
MD5 3eec6ee5cb070e3ff4d2b4e8c76d3dd5
BLAKE2b-256 db71689b6bc5fd21678392734e04b99a2eeab507a311db46a9ce5be13fc33732

See more details on using hashes here.

File details

Details for the file pymatgen-2022.4.19-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pymatgen-2022.4.19-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 ea10bb29a56acdb0eeedb6d9af0c7af089644d6905d5e180d6c2d6c184e4621c
MD5 824d1bec7f8ec9375682e3bfbf70da82
BLAKE2b-256 41ecfaa4dc6083257fda1bf7d85c5f3ea5da7f10da98a2a05b2fb9f8bcf5ba4c

See more details on using hashes here.

File details

Details for the file pymatgen-2022.4.19-cp310-cp310-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for pymatgen-2022.4.19-cp310-cp310-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 590e9da295b083331d101eb29ba0302292efd8a3d296cafe28d2bcc822fa5a46
MD5 2cae93ec16edbcb1364c6caff38e5207
BLAKE2b-256 11feb85e22048b326051e42a2ec88c9ddefed10feb59f62f1e9dc7be34a32efb

See more details on using hashes here.

File details

Details for the file pymatgen-2022.4.19-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pymatgen-2022.4.19-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 ae0b92b9759b1593e4b79d8145d201c5de5d1603528a79dad5fa594da6d41dab
MD5 005efe736b648e3cea7597a1789eb555
BLAKE2b-256 c1c681eaf861cd516265fa1db338d9624296dd2bf0029584b4d40d73d85db83e

See more details on using hashes here.

File details

Details for the file pymatgen-2022.4.19-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pymatgen-2022.4.19-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 7c3bcd9f112489675e8d73db9452d9bd7b975abd89890a8ca122efc99a39eac6
MD5 0e9fd102b6cdf9a57c99a47fe91b4acb
BLAKE2b-256 4c3304e40b1812443b2f1497ddb744cc62aa2ed06d9f732126008ed41982bdb1

See more details on using hashes here.

File details

Details for the file pymatgen-2022.4.19-cp39-cp39-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for pymatgen-2022.4.19-cp39-cp39-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 e62151b787bc33d506b52d4ed924c32f27106e12ff257aa2c23a30944b2bfc3a
MD5 c74d3bc5867fa8a6f2a659fcf558fb4e
BLAKE2b-256 7c8ee1c3382ccbbd8045f6b05b8f0d1418b20dafc7c3ff292a3e4bc03df38de9

See more details on using hashes here.

File details

Details for the file pymatgen-2022.4.19-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pymatgen-2022.4.19-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 3ba0531b72afa661a7a4b8ebed2e6eb46c797a0d2c42dd23a07f07881b11ee83
MD5 93727bbdfefca5f5fe6516f59f460401
BLAKE2b-256 aef03942c4d09c174cce3c5ff16690bc1fb51126d1516abfc1ab5e8a55d5615f

See more details on using hashes here.

File details

Details for the file pymatgen-2022.4.19-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for pymatgen-2022.4.19-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 fe1e76bbe6e16028de7ab01a6f3481a9d98a85072cc978e54f77c41d116ee6f6
MD5 94ab357e28344e0ed2f2f8d96fb54203
BLAKE2b-256 81f21cf9203650f9d538606dcae2bc9e81a1ee87c4eebad50614c9566c889a80

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page