Skip to main content

Python Materials Genomics is a robust materials analysis code that defines core object representations for structures and molecules with support for many electronic structure codes. It is currently the core analysis code powering the Materials Project (https://www.materialsproject.org).

Project description

Official docs: https://pymatgen.org

Pymatgen (Python Materials Genomics) is a robust, open-source Python library for materials analysis. These are some of the main features:

  1. Highly flexible classes for the representation of Element, Site, Molecule, Structure objects.
  2. Extensive input/output support, including support for VASP, ABINIT, CIF, Gaussian, XYZ, and many other file formats.
  3. Powerful analysis tools, including generation of phase diagrams, Pourbaix diagrams, diffusion analyses, reactions, etc.
  4. Electronic structure analyses, such as density of states and band structure.
  5. Integration with the Materials Project REST API.

Pymatgen is free to use. However, we also welcome your help to improve this library by making your own contributions. These contributions can be in the form of additional tools or modules you develop, or feature requests and bug reports. Please report any bugs and issues at pymatgen's [Github page] (https://github.com/materialsproject/pymatgen). For help with any pymatgen issues, please use the Discourse page.

Why use pymatgen?

There are many materials analysis codes out there, both commerical and free, but pymatgen offer several advantages:

  1. It is (fairly) robust. Pymatgen is used by thousands of researchers, and is the analysis code powering the Materials Project. The analysis it produces survives rigorous scrutiny every single day. Bugs tend to be found and corrected quickly. Pymatgen also uses CircleCI and Appveyor for continuous integration on the Linux and Windows platforms, respectively, which ensures that every commit passes a comprehensive suite of unittests.
  2. It is well documented. A fairly comprehensive documentation has been written to help you get to grips with it quickly.
  3. It is open. You are free to use and contribute to pymatgen. It also means that pymatgen is continuously being improved. We will attribute any code you contribute to any publication you specify. Contributing to pymatgen means your research becomes more visible, which translates to greater impact.
  4. It is fast. Many of the core numerical methods in pymatgen have been optimized by vectorizing in numpy/scipy. This means that coordinate manipulations are extremely fast and are in fact comparable to codes written in other languages. Pymatgen also comes with a complete system for handling periodic boundary conditions.
  5. It will be around. Pymatgen is not a pet research project. It is used in the well-established Materials Project. It is also actively being developed and maintained by the Materials Virtual Lab, the ABINIT group and many other research groups.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pymatgen-2022.4.26.tar.gz (2.6 MB view details)

Uploaded Source

Built Distributions

pymatgen-2022.4.26-cp310-cp310-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.10 Windows x86-64

pymatgen-2022.4.26-cp310-cp310-macosx_10_15_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.10 macOS 10.15+ x86-64

pymatgen-2022.4.26-cp39-cp39-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.9 Windows x86-64

pymatgen-2022.4.26-cp39-cp39-macosx_11_0_arm64.whl (3.0 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pymatgen-2022.4.26-cp39-cp39-macosx_10_15_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.9 macOS 10.15+ x86-64

pymatgen-2022.4.26-cp38-cp38-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.8 Windows x86-64

pymatgen-2022.4.26-cp38-cp38-macosx_10_14_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

File details

Details for the file pymatgen-2022.4.26.tar.gz.

File metadata

  • Download URL: pymatgen-2022.4.26.tar.gz
  • Upload date:
  • Size: 2.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.9.12

File hashes

Hashes for pymatgen-2022.4.26.tar.gz
Algorithm Hash digest
SHA256 e5a2c85ffd592902da740ea2e76a5699b38d2a370bae65dc68e9bda4bceac218
MD5 9c6b2c67e23eaa07b29538ad457301ef
BLAKE2b-256 bdb8716bf016b4cca3c39a01dc2fa19d9f74d75b0c8467d2963279397b23a8e0

See more details on using hashes here.

File details

Details for the file pymatgen-2022.4.26-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pymatgen-2022.4.26-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 f0c5c1bd0d0a22cb7767427bb5f5bf30c7d73cd80df1527537a0437f1a2e6801
MD5 5b358677786d33ed24e5687e2243be57
BLAKE2b-256 89ec3652bcd30d3cbc1be7a11170f6067a7970d2dcd24291a4b57dfd376b3b2f

See more details on using hashes here.

File details

Details for the file pymatgen-2022.4.26-cp310-cp310-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for pymatgen-2022.4.26-cp310-cp310-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 03afb8e3ba80a33a0f94eca2c867991e20891d73d127ed51a1dadf8a00412f7a
MD5 b3dc2586de4e04255c5282d78d991ff7
BLAKE2b-256 f04b019879fbc58649bfe0273f6687a4c4b2109d9f54592a7a9151985c2f7753

See more details on using hashes here.

File details

Details for the file pymatgen-2022.4.26-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pymatgen-2022.4.26-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 9aaca2d0ea4ef480834e4563388420401bc650e41e19efcfe1d4988a66447e3e
MD5 3c718a5c29f12571316ed7f229672701
BLAKE2b-256 6ef68ad8156fb8d28d6f3d0ec3dd570533789d521e0d9235efd8ff32e8534efc

See more details on using hashes here.

File details

Details for the file pymatgen-2022.4.26-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pymatgen-2022.4.26-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b0b4ecdd81bdc8f63225eebcb6e233e8531044d5cbafea3936dafe8189961d44
MD5 a9a13e3bcd5b97c260307b38d4f9858d
BLAKE2b-256 52de76b489fd08ac9d8ffdc9d212a754afe338f498c943f3b391bbdc18715789

See more details on using hashes here.

File details

Details for the file pymatgen-2022.4.26-cp39-cp39-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for pymatgen-2022.4.26-cp39-cp39-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 0f41fb076c1c9687363133f30d24973150474416645ef139f0cec602ccfb1d0c
MD5 3ac33509b5975760758fdbcad27770fa
BLAKE2b-256 76043f786cd1258277b8bb05a94a6cc02269b19d5e093e1afabf73e0b1f2319e

See more details on using hashes here.

File details

Details for the file pymatgen-2022.4.26-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pymatgen-2022.4.26-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 8417b8ef4162f938a128008e1ec19758474869b6a23ba3cc022d2298d798810f
MD5 63abbadada3eeca11037f0746958533a
BLAKE2b-256 ffb86075d840b549a499e11783a35c144026ecb30c46a41957997679ce520ad5

See more details on using hashes here.

File details

Details for the file pymatgen-2022.4.26-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for pymatgen-2022.4.26-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 80fc19515a5a194bb0b8e642cd294e9fc863c3c85fd8ba7c2da209c5b4eb3021
MD5 a533abb44f2a12a6a3f9cdb9b3d5c9a3
BLAKE2b-256 9811b9a763bc1eae714f6017d2533ea81bd0a296ce56d2b0a3a19906f41159b1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page