Skip to main content

Python Materials Genomics is a robust materials analysis code that defines core object representations for structures and molecules with support for many electronic structure codes. It is currently the core analysis code powering the Materials Project (https://www.materialsproject.org).

Project description

Official docs: https://pymatgen.org

Pymatgen (Python Materials Genomics) is a robust, open-source Python library for materials analysis. These are some of the main features:

  1. Highly flexible classes for the representation of Element, Site, Molecule, Structure objects.
  2. Extensive input/output support, including support for VASP, ABINIT, CIF, Gaussian, XYZ, and many other file formats.
  3. Powerful analysis tools, including generation of phase diagrams, Pourbaix diagrams, diffusion analyses, reactions, etc.
  4. Electronic structure analyses, such as density of states and band structure.
  5. Integration with the Materials Project REST API.

Pymatgen is free to use. However, we also welcome your help to improve this library by making your own contributions. These contributions can be in the form of additional tools or modules you develop, or feature requests and bug reports. Please report any bugs and issues at pymatgen's [Github page] (https://github.com/materialsproject/pymatgen). For help with any pymatgen issues, please use the Discourse page.

Why use pymatgen?

There are many materials analysis codes out there, both commerical and free, but pymatgen offer several advantages:

  1. It is (fairly) robust. Pymatgen is used by thousands of researchers, and is the analysis code powering the Materials Project. The analysis it produces survives rigorous scrutiny every single day. Bugs tend to be found and corrected quickly. Pymatgen also uses CircleCI and Appveyor for continuous integration on the Linux and Windows platforms, respectively, which ensures that every commit passes a comprehensive suite of unittests.
  2. It is well documented. A fairly comprehensive documentation has been written to help you get to grips with it quickly.
  3. It is open. You are free to use and contribute to pymatgen. It also means that pymatgen is continuously being improved. We will attribute any code you contribute to any publication you specify. Contributing to pymatgen means your research becomes more visible, which translates to greater impact.
  4. It is fast. Many of the core numerical methods in pymatgen have been optimized by vectorizing in numpy/scipy. This means that coordinate manipulations are extremely fast and are in fact comparable to codes written in other languages. Pymatgen also comes with a complete system for handling periodic boundary conditions.
  5. It will be around. Pymatgen is not a pet research project. It is used in the well-established Materials Project. It is also actively being developed and maintained by the Materials Virtual Lab, the ABINIT group and many other research groups.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pymatgen-2022.5.17.tar.gz (2.6 MB view details)

Uploaded Source

Built Distributions

pymatgen-2022.5.17-cp310-cp310-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.10 Windows x86-64

pymatgen-2022.5.17-cp310-cp310-macosx_10_15_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.10 macOS 10.15+ x86-64

pymatgen-2022.5.17-cp39-cp39-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.9 Windows x86-64

pymatgen-2022.5.17-cp39-cp39-macosx_11_0_arm64.whl (3.1 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pymatgen-2022.5.17-cp39-cp39-macosx_10_15_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.9 macOS 10.15+ x86-64

pymatgen-2022.5.17-cp38-cp38-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.8 Windows x86-64

pymatgen-2022.5.17-cp38-cp38-macosx_10_15_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.8 macOS 10.15+ x86-64

File details

Details for the file pymatgen-2022.5.17.tar.gz.

File metadata

  • Download URL: pymatgen-2022.5.17.tar.gz
  • Upload date:
  • Size: 2.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.9.12

File hashes

Hashes for pymatgen-2022.5.17.tar.gz
Algorithm Hash digest
SHA256 3d28aff820cdad7d70767ee94b6947648e8bd9a992655cb82503cd3607f4312e
MD5 f2c4706f38c02f572a76fc041bfd1147
BLAKE2b-256 3a559ff284c79fcab7a8c6f2d6a649e57e07e046bf0bb930ba07ed770dea304a

See more details on using hashes here.

File details

Details for the file pymatgen-2022.5.17-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pymatgen-2022.5.17-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 4245dfa26ae9f6c70631eceebe14baab0369118685c79b2a9e4cb545cefd6acc
MD5 bd1b91056d911462f12e3d99dd55fc90
BLAKE2b-256 7c6d2a08d5a850ae37fa7479cb8aebae4db3e7d76dd13e5ac3a3c8e534be4c1b

See more details on using hashes here.

File details

Details for the file pymatgen-2022.5.17-cp310-cp310-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for pymatgen-2022.5.17-cp310-cp310-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 2cc8a464b67713f034fc3e24a720600bee9b44b0f5293f574563b08560bd05a3
MD5 433269e31874c794ba795c781ff33a94
BLAKE2b-256 d5875509432bc8e17cf0f4b7a5917f570d14f6e5d12c334eb08e87223a88e658

See more details on using hashes here.

File details

Details for the file pymatgen-2022.5.17-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pymatgen-2022.5.17-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 db65f3cec93503dc25b04d9c3cd4ae828ca0bd8dc9f6d08086a7cb27f951189a
MD5 51bffac0157f7c958c281378e7b3de27
BLAKE2b-256 5360feb954d8fd7f66d812d3ab813ccc9b151051b8b4c2d20bb58a76abd8e2b2

See more details on using hashes here.

File details

Details for the file pymatgen-2022.5.17-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pymatgen-2022.5.17-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 aa242ef24e5920384c89755c0357ee746b0a3adc3f373fcd94f47a7bd9ab2b7b
MD5 0f92f5e9cfad196c73d7ef4d4f73785a
BLAKE2b-256 4b0e6e45e8c3b0a9f15c44cc52ad9b1fe2b1ece1263546a4f97747d353416131

See more details on using hashes here.

File details

Details for the file pymatgen-2022.5.17-cp39-cp39-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for pymatgen-2022.5.17-cp39-cp39-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 39c04082f54b36060ed6656d5fa118301edf44d66e34b70aab8fa02de4d65dd3
MD5 0d88365ca20ea52f3c3ad30112d4913d
BLAKE2b-256 40111253e6c39c8b22ef5a80ced3fd33ac1022154c7407a9fe686b3256e05a51

See more details on using hashes here.

File details

Details for the file pymatgen-2022.5.17-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pymatgen-2022.5.17-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 cb7d3fd1e4d11c5dd7af8fc3581d7b9acab0308f021a2d0b801804609b580949
MD5 346ec078df9e4347aade3f147296d7ca
BLAKE2b-256 a37c399c9d30518e83ee6475b128f95c9d10b3a0f3d91a602e6778e1290750bd

See more details on using hashes here.

File details

Details for the file pymatgen-2022.5.17-cp38-cp38-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for pymatgen-2022.5.17-cp38-cp38-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 b128d19fad564e4dd5843f76da341983b6a5f7f96cb75f5c382050e00c469e99
MD5 c1fd0a4a265c7adb017830861d7727a8
BLAKE2b-256 12a38a24f6b38a48bb9bef484af68b2b74b0ff7a31a13bc5f9a741b07ceeecb4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page