Skip to main content

Python Materials Genomics is a robust materials analysis code that defines core object representations for structures and molecules with support for many electronic structure codes. It is currently the core analysis code powering the Materials Project (https://www.materialsproject.org).

Project description

Official docs: https://pymatgen.org

Pymatgen (Python Materials Genomics) is a robust, open-source Python library for materials analysis. These are some of the main features:

  1. Highly flexible classes for the representation of Element, Site, Molecule, Structure objects.
  2. Extensive input/output support, including support for VASP, ABINIT, CIF, Gaussian, XYZ, and many other file formats.
  3. Powerful analysis tools, including generation of phase diagrams, Pourbaix diagrams, diffusion analyses, reactions, etc.
  4. Electronic structure analyses, such as density of states and band structure.
  5. Integration with the Materials Project REST API.

Pymatgen is free to use. However, we also welcome your help to improve this library by making your own contributions. These contributions can be in the form of additional tools or modules you develop, or feature requests and bug reports. Please report any bugs and issues at pymatgen's [Github page] (https://github.com/materialsproject/pymatgen). For help with any pymatgen issues, please use the Discourse page.

Why use pymatgen?

There are many materials analysis codes out there, both commerical and free, but pymatgen offer several advantages:

  1. It is (fairly) robust. Pymatgen is used by thousands of researchers, and is the analysis code powering the Materials Project. The analysis it produces survives rigorous scrutiny every single day. Bugs tend to be found and corrected quickly. Pymatgen also uses CircleCI and Appveyor for continuous integration on the Linux and Windows platforms, respectively, which ensures that every commit passes a comprehensive suite of unittests.
  2. It is well documented. A fairly comprehensive documentation has been written to help you get to grips with it quickly.
  3. It is open. You are free to use and contribute to pymatgen. It also means that pymatgen is continuously being improved. We will attribute any code you contribute to any publication you specify. Contributing to pymatgen means your research becomes more visible, which translates to greater impact.
  4. It is fast. Many of the core numerical methods in pymatgen have been optimized by vectorizing in numpy/scipy. This means that coordinate manipulations are extremely fast and are in fact comparable to codes written in other languages. Pymatgen also comes with a complete system for handling periodic boundary conditions.
  5. It will be around. Pymatgen is not a pet research project. It is used in the well-established Materials Project. It is also actively being developed and maintained by the Materials Virtual Lab, the ABINIT group and many other research groups.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pymatgen-2022.5.18.tar.gz (2.6 MB view details)

Uploaded Source

Built Distributions

pymatgen-2022.5.18-cp310-cp310-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.10 Windows x86-64

pymatgen-2022.5.18-cp310-cp310-macosx_10_15_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.10 macOS 10.15+ x86-64

pymatgen-2022.5.18-cp39-cp39-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.9 Windows x86-64

pymatgen-2022.5.18-cp39-cp39-macosx_11_0_arm64.whl (3.1 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pymatgen-2022.5.18-cp39-cp39-macosx_10_15_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.9 macOS 10.15+ x86-64

pymatgen-2022.5.18-cp38-cp38-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.8 Windows x86-64

pymatgen-2022.5.18-cp38-cp38-macosx_10_15_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.8 macOS 10.15+ x86-64

File details

Details for the file pymatgen-2022.5.18.tar.gz.

File metadata

  • Download URL: pymatgen-2022.5.18.tar.gz
  • Upload date:
  • Size: 2.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.9.12

File hashes

Hashes for pymatgen-2022.5.18.tar.gz
Algorithm Hash digest
SHA256 e8920163b0e45ad54573c297de10abc680b89c5f0b02a62f9e6359f965f76a63
MD5 dd44e091907b3631ecac6cfaa191db36
BLAKE2b-256 092ef969b5af31e1ea389f3f268282f2bca97773fa69d3f796dcffeb401d41c2

See more details on using hashes here.

File details

Details for the file pymatgen-2022.5.18-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pymatgen-2022.5.18-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 a9e6718731079ef49b4bbb0d8bcf9547ce227a809a4c4e0bc854bf0085ea2303
MD5 1b7354a79ea04877fbae18bca8c8bcb8
BLAKE2b-256 b32b751f55cd2044e2554f7ab22409dc75a613f8861f16ddca2e67b3e66896f6

See more details on using hashes here.

File details

Details for the file pymatgen-2022.5.18-cp310-cp310-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for pymatgen-2022.5.18-cp310-cp310-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 6ca3f30129afb3ca58d6e61f657f6c6dcc385ab7893e0f2ff455e12097a84db8
MD5 19005d1a1bc627be43880ed0493abe45
BLAKE2b-256 1bcce4b9fb3bb0fc9e7cce3329246e5b0f7c1db2a527fc881c97c5226a666275

See more details on using hashes here.

File details

Details for the file pymatgen-2022.5.18-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pymatgen-2022.5.18-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 cca2051d56cc4a1cd7befbbd94c1d4a50411c60f9c65eefe89b14c52d27e7691
MD5 d3d9c99f3e8c2125f3dbf87cf937a050
BLAKE2b-256 ce53a7362ca9de226d21c79f83ed9ec26c14e78b797a76cf9532098254c3b91f

See more details on using hashes here.

File details

Details for the file pymatgen-2022.5.18-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pymatgen-2022.5.18-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2a61bb8f3eb50a797fc27ac040264aa4c7087b879699bcf372c3303a3833b29e
MD5 80cf0a36cf8db85d55e2d9faa8661c0e
BLAKE2b-256 40cfb82a1b6c15a6581c71436a1a509adce32aea4038cc10b158b59425ae4a15

See more details on using hashes here.

File details

Details for the file pymatgen-2022.5.18-cp39-cp39-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for pymatgen-2022.5.18-cp39-cp39-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 d69c86642b9f53532dccb9cd6a989d151511d5d064276b0bdd3551e8e907fc4f
MD5 7378601e2961eca65d09c0d0fef20ca7
BLAKE2b-256 620e86f558253b6a332e6591925f6e30d6f4a1763c3779606bcb2ddbef093749

See more details on using hashes here.

File details

Details for the file pymatgen-2022.5.18-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pymatgen-2022.5.18-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 efcf9d0d5d8be30ba84aca2c3a699112cdce94490a906deaa7504e989ac031a3
MD5 b2da7c357a4a46db3793f51a69a15637
BLAKE2b-256 ff89d8cc75bbaaec727f8a8ef57f604dc3b75d5633cf39ea9ad57621a040d808

See more details on using hashes here.

File details

Details for the file pymatgen-2022.5.18-cp38-cp38-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for pymatgen-2022.5.18-cp38-cp38-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 1d40bebede9f10895ab8ec6aa5cdcd3a5f54361d5d82142552f3b286448c903c
MD5 04d3d2a9cf017ccc91a63c0502a7646f
BLAKE2b-256 1d965f3c2b40ffff2bdbccdc1965abba1b91a08aaa88c8379ee70906f44fa32f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page