Skip to main content

Python Materials Genomics is a robust materials analysis code that defines core object representations for structures and molecules with support for many electronic structure codes. It is currently the core analysis code powering the Materials Project (https://www.materialsproject.org).

Project description

Official docs: https://pymatgen.org

Pymatgen (Python Materials Genomics) is a robust, open-source Python library for materials analysis. These are some of the main features:

  1. Highly flexible classes for the representation of Element, Site, Molecule, Structure objects.
  2. Extensive input/output support, including support for VASP, ABINIT, CIF, Gaussian, XYZ, and many other file formats.
  3. Powerful analysis tools, including generation of phase diagrams, Pourbaix diagrams, diffusion analyses, reactions, etc.
  4. Electronic structure analyses, such as density of states and band structure.
  5. Integration with the Materials Project REST API.

Pymatgen is free to use. However, we also welcome your help to improve this library by making your own contributions. These contributions can be in the form of additional tools or modules you develop, or feature requests and bug reports. Please report any bugs and issues at pymatgen's [Github page] (https://github.com/materialsproject/pymatgen). For help with any pymatgen issues, please use the Discourse page.

Why use pymatgen?

There are many materials analysis codes out there, both commerical and free, but pymatgen offer several advantages:

  1. It is (fairly) robust. Pymatgen is used by thousands of researchers, and is the analysis code powering the Materials Project. The analysis it produces survives rigorous scrutiny every single day. Bugs tend to be found and corrected quickly. Pymatgen also uses CircleCI and Appveyor for continuous integration on the Linux and Windows platforms, respectively, which ensures that every commit passes a comprehensive suite of unittests.
  2. It is well documented. A fairly comprehensive documentation has been written to help you get to grips with it quickly.
  3. It is open. You are free to use and contribute to pymatgen. It also means that pymatgen is continuously being improved. We will attribute any code you contribute to any publication you specify. Contributing to pymatgen means your research becomes more visible, which translates to greater impact.
  4. It is fast. Many of the core numerical methods in pymatgen have been optimized by vectorizing in numpy/scipy. This means that coordinate manipulations are extremely fast and are in fact comparable to codes written in other languages. Pymatgen also comes with a complete system for handling periodic boundary conditions.
  5. It will be around. Pymatgen is not a pet research project. It is used in the well-established Materials Project. It is also actively being developed and maintained by the Materials Virtual Lab, the ABINIT group and many other research groups.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pymatgen-2022.5.19.tar.gz (2.6 MB view details)

Uploaded Source

Built Distributions

pymatgen-2022.5.19-cp310-cp310-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.10 Windows x86-64

pymatgen-2022.5.19-cp310-cp310-macosx_10_15_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.10 macOS 10.15+ x86-64

pymatgen-2022.5.19-cp39-cp39-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.9 Windows x86-64

pymatgen-2022.5.19-cp39-cp39-macosx_11_0_arm64.whl (3.1 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pymatgen-2022.5.19-cp39-cp39-macosx_10_15_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.9 macOS 10.15+ x86-64

pymatgen-2022.5.19-cp38-cp38-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.8 Windows x86-64

pymatgen-2022.5.19-cp38-cp38-macosx_10_15_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.8 macOS 10.15+ x86-64

File details

Details for the file pymatgen-2022.5.19.tar.gz.

File metadata

  • Download URL: pymatgen-2022.5.19.tar.gz
  • Upload date:
  • Size: 2.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.9.12

File hashes

Hashes for pymatgen-2022.5.19.tar.gz
Algorithm Hash digest
SHA256 08be542ac5449b956022cf17c1c0488b79d6b885bd1861b9120a2216d4e33548
MD5 e02b64844e1d2fe2bc3f59ca3aa63075
BLAKE2b-256 8b14d068a901d91d8fcef03304c52391f85fe98db71f58e1b88692673e2cf457

See more details on using hashes here.

File details

Details for the file pymatgen-2022.5.19-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pymatgen-2022.5.19-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 f4c54da225d251f46b1fdae4908abfec66ca1ae6558c4b7640e0c7c428f589de
MD5 d98d765e7755ae8bada5f98dbdbcc018
BLAKE2b-256 9add2d42b676238b2a4a4d4afd3150abe9f441382115e89b4c37a274a4cb71bf

See more details on using hashes here.

File details

Details for the file pymatgen-2022.5.19-cp310-cp310-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for pymatgen-2022.5.19-cp310-cp310-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 7a82873f9c92a921f400853354c33c7b34b60afc75970db78d402fc68b23cc18
MD5 ece6670285a752350d5489546fbd5b85
BLAKE2b-256 f8650a2cbe18f9ad967d499e0937c75cdef0d416995ae4c0f4fb3d5036ab6294

See more details on using hashes here.

File details

Details for the file pymatgen-2022.5.19-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pymatgen-2022.5.19-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 5583927f0ceaf63ad723e390d3f1cbfca9623da1b5f7bb5a742114946706f4f3
MD5 ce6dee7e7ccb3cbfb1135a1957ed38f3
BLAKE2b-256 33ff4afd58b5bca68d7a997105e3b9501ab411df4a407f2a6aca2b8fe771bcfb

See more details on using hashes here.

File details

Details for the file pymatgen-2022.5.19-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pymatgen-2022.5.19-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a40bb682ad2939c7190022cf8e1fdb4f35e634e0e2dd09c30fbc9908f9987074
MD5 02089341779bf1b6e001eae9fa642676
BLAKE2b-256 740f7af512a6fa551dfa32e96058e722ca7a363c2f69e8b74f370ca58ad6997a

See more details on using hashes here.

File details

Details for the file pymatgen-2022.5.19-cp39-cp39-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for pymatgen-2022.5.19-cp39-cp39-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 072dd650fae87dafe501106dfff5970e48e9dd24d3cb42effe9add4f2870bee2
MD5 fb956eaecc968dadee1b7b74f1ccd63c
BLAKE2b-256 ba7325cef0421b5074069c23f2218afc8bee2f15d530a034819a03a16b3b28e2

See more details on using hashes here.

File details

Details for the file pymatgen-2022.5.19-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pymatgen-2022.5.19-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 454ee38638ccfd1df6776bad5e28d1f12ed3fb8ef27aa4d140605b2c527c268e
MD5 a7b7ffc1101f1286217e4e66611d2694
BLAKE2b-256 68be3d142cacc0b64a905fd3c09d395dd3e4d63e8218f15901158c5637450212

See more details on using hashes here.

File details

Details for the file pymatgen-2022.5.19-cp38-cp38-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for pymatgen-2022.5.19-cp38-cp38-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 71bf151cbb9e577ccc1859a5fb438ce71ec6bc88892fdc18f74cf9a8ba84478d
MD5 a626eb37018faf6062a4f180d112e792
BLAKE2b-256 299aad41a02d012f1342091a70aaf28dc6cd85e7d5eb09213245d4dad5feba10

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page