Skip to main content

Python Materials Genomics is a robust materials analysis code that defines core object representations for structures and molecules with support for many electronic structure codes. It is currently the core analysis code powering the Materials Project (https://www.materialsproject.org).

Project description

Official docs: https://pymatgen.org

Pymatgen (Python Materials Genomics) is a robust, open-source Python library for materials analysis. These are some of the main features:

  1. Highly flexible classes for the representation of Element, Site, Molecule, Structure objects.
  2. Extensive input/output support, including support for VASP, ABINIT, CIF, Gaussian, XYZ, and many other file formats.
  3. Powerful analysis tools, including generation of phase diagrams, Pourbaix diagrams, diffusion analyses, reactions, etc.
  4. Electronic structure analyses, such as density of states and band structure.
  5. Integration with the Materials Project REST API.

Pymatgen is free to use. However, we also welcome your help to improve this library by making your own contributions. These contributions can be in the form of additional tools or modules you develop, or feature requests and bug reports. Please report any bugs and issues at pymatgen's [Github page] (https://github.com/materialsproject/pymatgen). For help with any pymatgen issues, please use the Discourse page.

Why use pymatgen?

There are many materials analysis codes out there, both commercial and free, but pymatgen offer several advantages:

  1. It is (fairly) robust. Pymatgen is used by thousands of researchers, and is the analysis code powering the Materials Project. The analysis it produces survives rigorous scrutiny every single day. Bugs tend to be found and corrected quickly. Pymatgen also uses CircleCI and Appveyor for continuous integration on the Linux and Windows platforms, respectively, which ensures that every commit passes a comprehensive suite of unittests.
  2. It is well documented. A fairly comprehensive documentation has been written to help you get to grips with it quickly.
  3. It is open. You are free to use and contribute to pymatgen. It also means that pymatgen is continuously being improved. We will attribute any code you contribute to any publication you specify. Contributing to pymatgen means your research becomes more visible, which translates to greater impact.
  4. It is fast. Many of the core numerical methods in pymatgen have been optimized by vectorizing in numpy/scipy. This means that coordinate manipulations are extremely fast and are in fact comparable to codes written in other languages. Pymatgen also comes with a complete system for handling periodic boundary conditions.
  5. It will be around. Pymatgen is not a pet research project. It is used in the well-established Materials Project. It is also actively being developed and maintained by the Materials Virtual Lab, the ABINIT group and many other research groups.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pymatgen-2022.5.26.tar.gz (2.6 MB view details)

Uploaded Source

Built Distributions

pymatgen-2022.5.26-cp310-cp310-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.10 Windows x86-64

pymatgen-2022.5.26-cp310-cp310-macosx_10_15_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.10 macOS 10.15+ x86-64

pymatgen-2022.5.26-cp39-cp39-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.9 Windows x86-64

pymatgen-2022.5.26-cp39-cp39-macosx_10_15_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.9 macOS 10.15+ x86-64

pymatgen-2022.5.26-cp38-cp38-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.8 Windows x86-64

pymatgen-2022.5.26-cp38-cp38-macosx_10_15_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.8 macOS 10.15+ x86-64

File details

Details for the file pymatgen-2022.5.26.tar.gz.

File metadata

  • Download URL: pymatgen-2022.5.26.tar.gz
  • Upload date:
  • Size: 2.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.8.12

File hashes

Hashes for pymatgen-2022.5.26.tar.gz
Algorithm Hash digest
SHA256 47dc002b6df1c6672a089dc59726774b3c46c8fb3f72deb2f1e4822b1967b82e
MD5 25bbfaf3575d07563ca44eba90a8fb0c
BLAKE2b-256 6f74ca96cfc3270fe107c7269b39424cca0ecdb1ddf0e498e3dac6f71c03140f

See more details on using hashes here.

File details

Details for the file pymatgen-2022.5.26-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pymatgen-2022.5.26-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 754cd36cb35195b1df04bb77f3782dc360239bb4bd22ce7e2756c44cd25873e9
MD5 62dbc0f40da31fda9c1d9ced9302adb7
BLAKE2b-256 6a13dac330df3564ee8b5d7ad4f704f88c58c834f38562568d98f465e3f5476b

See more details on using hashes here.

File details

Details for the file pymatgen-2022.5.26-cp310-cp310-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for pymatgen-2022.5.26-cp310-cp310-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 800da6bb8a5ae7e6d844fe81bc481d7dc738850cd785a378dd4d24a1df1e5701
MD5 c60fa7619afd9d844a7d53b39b158169
BLAKE2b-256 decc76340dbac864d5f6878f4271f2271b55610ec0312d651e7a1e143919d5b2

See more details on using hashes here.

File details

Details for the file pymatgen-2022.5.26-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pymatgen-2022.5.26-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 dfca29310c20a0c5b32d397dac6d5b8fb0bc34ea76ba28c1b5f7c92b54dcce63
MD5 478a4f08a53e6790d6c8e46cbcec9e1f
BLAKE2b-256 737cacfc6c1b196b3d13ff2307b62a6040fcee553dab68e4d25d0dd2f3afc3e5

See more details on using hashes here.

File details

Details for the file pymatgen-2022.5.26-cp39-cp39-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for pymatgen-2022.5.26-cp39-cp39-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 5eb61c990376fd4b733243cd7dfb5c4baf84b8bc99a0707637baf47cbb8e7fb5
MD5 0dca4a31522d6f04bbb84a23faeef34c
BLAKE2b-256 62f381cca8cbd6e0eafddbe1a6810ac989d6351c2c178608ba9de31a0e0a4b4d

See more details on using hashes here.

File details

Details for the file pymatgen-2022.5.26-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pymatgen-2022.5.26-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 f7b8e148d5ff5ab20fde243de51576581694dc5eda67d7932d7328595582250b
MD5 d17097e29389401a3497faf9e87ba4fa
BLAKE2b-256 51b26a6e332a9db327e3a00ac17954040fc3e5c84b0b43b25cc7aecb55706a93

See more details on using hashes here.

File details

Details for the file pymatgen-2022.5.26-cp38-cp38-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for pymatgen-2022.5.26-cp38-cp38-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 72a2fd761ff4d34c4c07a20a0f5d8e853191105796e70623b898459a9eede6cc
MD5 63fdbd5fc7403aebc2237375cc3d8d38
BLAKE2b-256 d33b850965232c8aefe7b95be8cf66c04e4a3e2437b36d84110ad19b6372153f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page