Skip to main content

Python Materials Genomics is a robust materials analysis code that defines core object representations for structures and molecules with support for many electronic structure codes. It is currently the core analysis code powering the Materials Project (https://www.materialsproject.org).

Reason this release was yanked:

remove defunct MPRester2 in favor of more streamlined handling of new and legacy API

Project description

Official docs: https://pymatgen.org

Pymatgen (Python Materials Genomics) is a robust, open-source Python library for materials analysis. These are some of the main features:

  1. Highly flexible classes for the representation of Element, Site, Molecule, Structure objects.
  2. Extensive input/output support, including support for VASP, ABINIT, CIF, Gaussian, XYZ, and many other file formats.
  3. Powerful analysis tools, including generation of phase diagrams, Pourbaix diagrams, diffusion analyses, reactions, etc.
  4. Electronic structure analyses, such as density of states and band structure.
  5. Integration with the Materials Project REST API.

Pymatgen is free to use. However, we also welcome your help to improve this library by making your own contributions. These contributions can be in the form of additional tools or modules you develop, or feature requests and bug reports. Please report any bugs and issues at pymatgen's [Github page] (https://github.com/materialsproject/pymatgen). For help with any pymatgen issues, please use the Discourse page.

Why use pymatgen?

There are many materials analysis codes out there, both commercial and free, but pymatgen offer several advantages:

  1. It is (fairly) robust. Pymatgen is used by thousands of researchers, and is the analysis code powering the Materials Project. The analysis it produces survives rigorous scrutiny every single day. Bugs tend to be found and corrected quickly. Pymatgen also uses CircleCI and Appveyor for continuous integration on the Linux and Windows platforms, respectively, which ensures that every commit passes a comprehensive suite of unittests.
  2. It is well documented. A fairly comprehensive documentation has been written to help you get to grips with it quickly.
  3. It is open. You are free to use and contribute to pymatgen. It also means that pymatgen is continuously being improved. We will attribute any code you contribute to any publication you specify. Contributing to pymatgen means your research becomes more visible, which translates to greater impact.
  4. It is fast. Many of the core numerical methods in pymatgen have been optimized by vectorizing in numpy/scipy. This means that coordinate manipulations are extremely fast and are in fact comparable to codes written in other languages. Pymatgen also comes with a complete system for handling periodic boundary conditions.
  5. It will be around. Pymatgen is not a pet research project. It is used in the well-established Materials Project. It is also actively being developed and maintained by the Materials Virtual Lab, the ABINIT group and many other research groups.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pymatgen-2022.7.24.tar.gz (2.6 MB view details)

Uploaded Source

Built Distributions

pymatgen-2022.7.24-cp310-cp310-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.10 Windows x86-64

pymatgen-2022.7.24-cp310-cp310-macosx_10_15_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.10 macOS 10.15+ x86-64

pymatgen-2022.7.24-cp39-cp39-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.9 Windows x86-64

pymatgen-2022.7.24-cp39-cp39-macosx_11_0_arm64.whl (3.1 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pymatgen-2022.7.24-cp39-cp39-macosx_10_15_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.9 macOS 10.15+ x86-64

pymatgen-2022.7.24-cp38-cp38-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.8 Windows x86-64

pymatgen-2022.7.24-cp38-cp38-macosx_10_15_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.8 macOS 10.15+ x86-64

File details

Details for the file pymatgen-2022.7.24.tar.gz.

File metadata

  • Download URL: pymatgen-2022.7.24.tar.gz
  • Upload date:
  • Size: 2.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for pymatgen-2022.7.24.tar.gz
Algorithm Hash digest
SHA256 f97a3dff41b93a5e9fb255122cd291949fb615b6953286614bdd47fa2dd4d5f0
MD5 9753775098c1bb3610919ea7226d16b2
BLAKE2b-256 67715586512fd910bd7272374ee78c3c06efd19f1818bdca69d2475658549259

See more details on using hashes here.

File details

Details for the file pymatgen-2022.7.24-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pymatgen-2022.7.24-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 e641ee7ae1fde4c1911b243933c51ffa49fb4b07b0294d6e186078e4e702f7fe
MD5 4404b55a1eaffcbbeb59e4fa547317b0
BLAKE2b-256 66985b2e1a0473118a85713da9032875641e36d3ec4ec49ec88087d0b9accf0c

See more details on using hashes here.

File details

Details for the file pymatgen-2022.7.24-cp310-cp310-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for pymatgen-2022.7.24-cp310-cp310-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 3057bdf496fdfb3b3e7c19bc8fd02d9d9b998175003c71a60ab033ced548f4a1
MD5 a1f460714ecb888921b98132db05e1c2
BLAKE2b-256 329ed6d11433e1f8dc2684e38a8a5c960f439a5cff5bd9a372cbef2a7f44c455

See more details on using hashes here.

File details

Details for the file pymatgen-2022.7.24-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pymatgen-2022.7.24-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 648b6bc5bb7cb60346e18580555eaf61550240c35da6689fb6ebc703ee488e01
MD5 bbb4361061b718f8012a6eaa5d9d3e7d
BLAKE2b-256 86b282567eea8d86a6a251bd06d3b5861091467f6e6b372480611e64f36a4bcf

See more details on using hashes here.

File details

Details for the file pymatgen-2022.7.24-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pymatgen-2022.7.24-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f7248deae00540fe71f6d3d5ee1a65662d633e69d6c0ce61c84ce4eb6bf9f806
MD5 127a768a491b938eb1c9ea03ad1c02ea
BLAKE2b-256 999fb1bbfca5478d17d656a9d3dc7f1016c7590962d691a87153cc015f41cd1f

See more details on using hashes here.

File details

Details for the file pymatgen-2022.7.24-cp39-cp39-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for pymatgen-2022.7.24-cp39-cp39-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 902b532234141255a3f40d5159f5c2c3b64250f202ff487f2a2b30d48313d85b
MD5 2a4efd07cd9a5ff5f98947bd641c695d
BLAKE2b-256 c02c4648db3c4391e51a622749dd55df547a1586433eb3e7da7d6a425513fe0f

See more details on using hashes here.

File details

Details for the file pymatgen-2022.7.24-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pymatgen-2022.7.24-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 91088dfa33e35b62adb5e0f6a64b0873c6d6944feba9858b9a5df3555fc1b85f
MD5 29293f31ce8f67a1fe2ac1ed8f93c99f
BLAKE2b-256 c07f8a9eaf3c82fd45484838a23408d2fcd3f771c5e3e43131fc3447289f0a14

See more details on using hashes here.

File details

Details for the file pymatgen-2022.7.24-cp38-cp38-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for pymatgen-2022.7.24-cp38-cp38-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 bf765f22cdec6adad083ab0486da3e25b98742c69d67c2f078a89acbde9c2580
MD5 4c7003dd74fec647f470f39c823fdbe3
BLAKE2b-256 d1f36d92731062bbba3095455db8a05c055d4f4b4f6c76c30735c33a61b807b5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page