Skip to main content

Python Materials Genomics is a robust materials analysis code that defines core object representations for structures and molecules with support for many electronic structure codes. It is currently the core analysis code powering the Materials Project (https://www.materialsproject.org).

Project description

Official docs: https://pymatgen.org

Pymatgen (Python Materials Genomics) is a robust, open-source Python library for materials analysis. These are some of the main features:

  1. Highly flexible classes for the representation of Element, Site, Molecule, Structure objects.
  2. Extensive input/output support, including support for VASP, ABINIT, CIF, Gaussian, XYZ, and many other file formats.
  3. Powerful analysis tools, including generation of phase diagrams, Pourbaix diagrams, diffusion analyses, reactions, etc.
  4. Electronic structure analyses, such as density of states and band structure.
  5. Integration with the Materials Project REST API.

Pymatgen is free to use. However, we also welcome your help to improve this library by making your own contributions. These contributions can be in the form of additional tools or modules you develop, or feature requests and bug reports. Please report any bugs and issues at pymatgen's [Github page] (https://github.com/materialsproject/pymatgen). For help with any pymatgen issues, please use the Discourse page.

Why use pymatgen?

There are many materials analysis codes out there, both commercial and free, but pymatgen offer several advantages:

  1. It is (fairly) robust. Pymatgen is used by thousands of researchers, and is the analysis code powering the Materials Project. The analysis it produces survives rigorous scrutiny every single day. Bugs tend to be found and corrected quickly. Pymatgen also uses CircleCI and Appveyor for continuous integration on the Linux and Windows platforms, respectively, which ensures that every commit passes a comprehensive suite of unittests.
  2. It is well documented. A fairly comprehensive documentation has been written to help you get to grips with it quickly.
  3. It is open. You are free to use and contribute to pymatgen. It also means that pymatgen is continuously being improved. We will attribute any code you contribute to any publication you specify. Contributing to pymatgen means your research becomes more visible, which translates to greater impact.
  4. It is fast. Many of the core numerical methods in pymatgen have been optimized by vectorizing in numpy/scipy. This means that coordinate manipulations are extremely fast and are in fact comparable to codes written in other languages. Pymatgen also comes with a complete system for handling periodic boundary conditions.
  5. It will be around. Pymatgen is not a pet research project. It is used in the well-established Materials Project. It is also actively being developed and maintained by the Materials Virtual Lab, the ABINIT group and many other research groups.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pymatgen-2022.7.24.1.tar.gz (2.6 MB view details)

Uploaded Source

Built Distributions

pymatgen-2022.7.24.1-cp310-cp310-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.10 Windows x86-64

pymatgen-2022.7.24.1-cp310-cp310-macosx_10_15_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.10 macOS 10.15+ x86-64

pymatgen-2022.7.24.1-cp39-cp39-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.9 Windows x86-64

pymatgen-2022.7.24.1-cp39-cp39-macosx_11_0_arm64.whl (3.1 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pymatgen-2022.7.24.1-cp39-cp39-macosx_10_15_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.9 macOS 10.15+ x86-64

pymatgen-2022.7.24.1-cp38-cp38-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.8 Windows x86-64

pymatgen-2022.7.24.1-cp38-cp38-macosx_10_15_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.8 macOS 10.15+ x86-64

File details

Details for the file pymatgen-2022.7.24.1.tar.gz.

File metadata

  • Download URL: pymatgen-2022.7.24.1.tar.gz
  • Upload date:
  • Size: 2.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for pymatgen-2022.7.24.1.tar.gz
Algorithm Hash digest
SHA256 646e4066a32da018034756ac2cd3fe3a87eb23d5ec9460debccaf82c62ffd7a6
MD5 8aea0305716416de4a39dfc0b150624d
BLAKE2b-256 af4f9a705eb5415e4247e75d01b852129702d4fbcd760cb0b468a451c7322f14

See more details on using hashes here.

File details

Details for the file pymatgen-2022.7.24.1-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pymatgen-2022.7.24.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 870f448a1c1d771cffa8ea8cf28c3fdfe40522875de51869a80f500fdee57a46
MD5 67b718d1988f58b854475e80693c6558
BLAKE2b-256 37e325fd14fdc22092e570eb835aa5052959bacd7748247159385c0915524b8b

See more details on using hashes here.

File details

Details for the file pymatgen-2022.7.24.1-cp310-cp310-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for pymatgen-2022.7.24.1-cp310-cp310-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 3bec0bce1b6aea6d7be6bf215fc5b3648e278429fefba4556d86db8b671909ff
MD5 f75d21bb8da2a392bee523e9f064c626
BLAKE2b-256 2009be60e26a6b4d6ba2678c0d77c8da72d536749a6f96240eaa5321d404b49f

See more details on using hashes here.

File details

Details for the file pymatgen-2022.7.24.1-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pymatgen-2022.7.24.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 2500c7e0acbdc26f92c20307721b5fb2d1a2cac5b30d941d80e821f6907974a1
MD5 cedd470b8cea6eb8fb2f6a628e883833
BLAKE2b-256 56d7e2c6716314620c163d94514af86dca797a1759a034e9d168c9f4e3559cf5

See more details on using hashes here.

File details

Details for the file pymatgen-2022.7.24.1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pymatgen-2022.7.24.1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4c53ec70a012028bb2cafc6d83a7e4a314d2632c6b4bbf298bf87a309f0568fe
MD5 047ef0512a0d35d719c0e0d5a24348b9
BLAKE2b-256 9ff3cab3330203a4c92c46c238c715333a9cd8142985084feb56d5a9b87fec48

See more details on using hashes here.

File details

Details for the file pymatgen-2022.7.24.1-cp39-cp39-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for pymatgen-2022.7.24.1-cp39-cp39-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 5d8ac2f5a3ee8ca1115629b82550e69e3dbc563e8fe45c6cd383165bb9487bdc
MD5 074afa6bac7db0457e09d7cf5b64570d
BLAKE2b-256 82d2a488bc85176942b2ee9120b098f691562f78045daa1e29ac71a1cb0fe563

See more details on using hashes here.

File details

Details for the file pymatgen-2022.7.24.1-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pymatgen-2022.7.24.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 585988a66488613700e40e402e55a1e52269f17a75e9701317f5861a771f11d9
MD5 02636b53111166c17fb22bd92809b5b0
BLAKE2b-256 63de3bdf7627a7d14cf86fa29f063dc17a544af8ee9b6c218cf6c3f1678d39fb

See more details on using hashes here.

File details

Details for the file pymatgen-2022.7.24.1-cp38-cp38-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for pymatgen-2022.7.24.1-cp38-cp38-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 de35d7bc979020b4e10753c134ebff83cbdcdb64805679944cd5f6605508b511
MD5 252670aa9df291cbbc76235863c0707e
BLAKE2b-256 cd71130db7968d5b0b4de13a49fcf5714ab21093c5ccc77f0dbe942a05e91a87

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page