Skip to main content

Python Materials Genomics is a robust materials analysis code that defines core object representations for structures and molecules with support for many electronic structure codes. It is currently the core analysis code powering the Materials Project (https://www.materialsproject.org).

Project description

Official docs: https://pymatgen.org

Pymatgen (Python Materials Genomics) is a robust, open-source Python library for materials analysis. These are some of the main features:

  1. Highly flexible classes for the representation of Element, Site, Molecule, Structure objects.
  2. Extensive input/output support, including support for VASP, ABINIT, CIF, Gaussian, XYZ, and many other file formats.
  3. Powerful analysis tools, including generation of phase diagrams, Pourbaix diagrams, diffusion analyses, reactions, etc.
  4. Electronic structure analyses, such as density of states and band structure.
  5. Integration with the Materials Project REST API.

Pymatgen is free to use. However, we also welcome your help to improve this library by making your own contributions. These contributions can be in the form of additional tools or modules you develop, or feature requests and bug reports. Please report any bugs and issues at pymatgen's [Github page] (https://github.com/materialsproject/pymatgen). For help with any pymatgen issues, please use the Discourse page.

Why use pymatgen?

There are many materials analysis codes out there, both commercial and free, but pymatgen offer several advantages:

  1. It is (fairly) robust. Pymatgen is used by thousands of researchers, and is the analysis code powering the Materials Project. The analysis it produces survives rigorous scrutiny every single day. Bugs tend to be found and corrected quickly. Pymatgen also uses CircleCI and Appveyor for continuous integration on the Linux and Windows platforms, respectively, which ensures that every commit passes a comprehensive suite of unittests.
  2. It is well documented. A fairly comprehensive documentation has been written to help you get to grips with it quickly.
  3. It is open. You are free to use and contribute to pymatgen. It also means that pymatgen is continuously being improved. We will attribute any code you contribute to any publication you specify. Contributing to pymatgen means your research becomes more visible, which translates to greater impact.
  4. It is fast. Many of the core numerical methods in pymatgen have been optimized by vectorizing in numpy/scipy. This means that coordinate manipulations are extremely fast and are in fact comparable to codes written in other languages. Pymatgen also comes with a complete system for handling periodic boundary conditions.
  5. It will be around. Pymatgen is not a pet research project. It is used in the well-established Materials Project. It is also actively being developed and maintained by the Materials Virtual Lab, the ABINIT group and many other research groups.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pymatgen-2022.7.25.tar.gz (2.6 MB view details)

Uploaded Source

Built Distributions

pymatgen-2022.7.25-cp310-cp310-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.10 Windows x86-64

pymatgen-2022.7.25-cp310-cp310-macosx_10_15_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.10 macOS 10.15+ x86-64

pymatgen-2022.7.25-cp39-cp39-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.9 Windows x86-64

pymatgen-2022.7.25-cp39-cp39-macosx_11_0_arm64.whl (3.1 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pymatgen-2022.7.25-cp39-cp39-macosx_10_15_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.9 macOS 10.15+ x86-64

pymatgen-2022.7.25-cp38-cp38-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.8 Windows x86-64

pymatgen-2022.7.25-cp38-cp38-macosx_10_15_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.8 macOS 10.15+ x86-64

File details

Details for the file pymatgen-2022.7.25.tar.gz.

File metadata

  • Download URL: pymatgen-2022.7.25.tar.gz
  • Upload date:
  • Size: 2.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for pymatgen-2022.7.25.tar.gz
Algorithm Hash digest
SHA256 3aec3adf4332a895c031711151c21289a0012b9435cbf33c7f6d6c669f548038
MD5 152000dff667bd7e2b4bb64556fd0d38
BLAKE2b-256 fbcd08d99a03e5e497e5c8a91676685a313fd10186db61f1b3b7fdccfe9d3b97

See more details on using hashes here.

File details

Details for the file pymatgen-2022.7.25-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pymatgen-2022.7.25-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 a88668dce5dada5cb9abc4ef16eaa7467c31289a115739a6ff13feb7b8b7a5fd
MD5 c10b9b14021ab89d7394101c8ad01e73
BLAKE2b-256 39131d644055ef8f9c104c46b46789dd4dae75f3f1e2390a8acdf46a2ae1d41d

See more details on using hashes here.

File details

Details for the file pymatgen-2022.7.25-cp310-cp310-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for pymatgen-2022.7.25-cp310-cp310-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 fd439e0610d0d96182cc28f47bb8041b8923212dceeb7a5d543bd26e5680c161
MD5 53b97bdf7aa8a524caa38e9c53880718
BLAKE2b-256 c9f610f8043226e3be50d007be9d3e781cdd3e5fc8106123553c71b796e83d73

See more details on using hashes here.

File details

Details for the file pymatgen-2022.7.25-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pymatgen-2022.7.25-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 04281ea9a392d2bcd4bb4cde08fedebc0cc89aa41477a90113d1d23237602c09
MD5 c54e9a1062de0ac54f39fb00e1484359
BLAKE2b-256 b6baddfbf9e685d0d8c6583eef15b8fd42ef44e09e3759508a72608dae1de488

See more details on using hashes here.

File details

Details for the file pymatgen-2022.7.25-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pymatgen-2022.7.25-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 5ce15d7b8cc1c3e373205c60eba4cee8e53a1efd234e5d3dbdda59ceba8a5945
MD5 756487b6b646aac42c00de9d74f08d20
BLAKE2b-256 98b16db5d77650e0680b17c44032d2c485c03b0311ba18ebba18aef183fb15fb

See more details on using hashes here.

File details

Details for the file pymatgen-2022.7.25-cp39-cp39-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for pymatgen-2022.7.25-cp39-cp39-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 6c2e06e5620d7a3d4d8b98da6e2052494a4de04fc7269e8167db581b2e692b1d
MD5 339311c3882085fa64b218a6ae9cf8f5
BLAKE2b-256 b66e01d31f67c547afca3cd8a9f9163a6c3a4c30fb85e928a1591fbb94bae1d4

See more details on using hashes here.

File details

Details for the file pymatgen-2022.7.25-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pymatgen-2022.7.25-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 db2046a12701d973e35349fe28ef417d8551e9add6b7b140cb52d6417f91e329
MD5 f7f791d08a6936e733cce52ba38a225b
BLAKE2b-256 44b12bc86f99c4123a8e272946c66c707783ffd812532677cc81837d8d88602f

See more details on using hashes here.

File details

Details for the file pymatgen-2022.7.25-cp38-cp38-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for pymatgen-2022.7.25-cp38-cp38-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 093a65118a6d539bdb9ed6c67371f6e5903e0b7f5d1fbd2779f60eaa0c4bab3c
MD5 c05ff4729d645b1b0f41c5cdaea39c1a
BLAKE2b-256 10c6302d729b3ad7589ad40da5914e4383f9e16f2d965737ef3dce41e975772a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page