Skip to main content

Python Materials Genomics is a robust materials analysis code that defines core object representations for structures and molecules with support for many electronic structure codes. It is currently the core analysis code powering the Materials Project (https://materialsproject.org).

Project description

Official docs: https://pymatgen.org

Pymatgen (Python Materials Genomics) is a robust, open-source Python library for materials analysis. These are some of the main features:

  1. Highly flexible classes for the representation of Element, Site, Molecule, Structure objects.
  2. Extensive input/output support, including support for VASP, ABINIT, CIF, Gaussian, XYZ, and many other file formats.
  3. Powerful analysis tools, including generation of phase diagrams, Pourbaix diagrams, diffusion analyses, reactions, etc.
  4. Electronic structure analyses, such as density of states and band structure.
  5. Integration with the Materials Project REST API.

Pymatgen is free to use. However, we also welcome your help to improve this library by making your own contributions. These contributions can be in the form of additional tools or modules you develop, or feature requests and bug reports. Please report any bugs and issues at pymatgen's [Github page] (https://github.com/materialsproject/pymatgen). For help with any pymatgen issues, please use the Discourse page.

Why use pymatgen?

There are many materials analysis codes out there, both commercial and free, but pymatgen offer several advantages:

  1. It is (fairly) robust. Pymatgen is used by thousands of researchers, and is the analysis code powering the Materials Project. The analysis it produces survives rigorous scrutiny every single day. Bugs tend to be found and corrected quickly. Pymatgen also uses CircleCI and Appveyor for continuous integration on the Linux and Windows platforms, respectively, which ensures that every commit passes a comprehensive suite of unittests.
  2. It is well documented. A fairly comprehensive documentation has been written to help you get to grips with it quickly.
  3. It is open. You are free to use and contribute to pymatgen. It also means that pymatgen is continuously being improved. We will attribute any code you contribute to any publication you specify. Contributing to pymatgen means your research becomes more visible, which translates to greater impact.
  4. It is fast. Many of the core numerical methods in pymatgen have been optimized by vectorizing in numpy/scipy. This means that coordinate manipulations are extremely fast and are in fact comparable to codes written in other languages. Pymatgen also comes with a complete system for handling periodic boundary conditions.
  5. It will be around. Pymatgen is not a pet research project. It is used in the well-established Materials Project. It is also actively being developed and maintained by the Materials Virtual Lab, the ABINIT group and many other research groups.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pymatgen-2022.8.23.tar.gz (2.6 MB view details)

Uploaded Source

Built Distributions

pymatgen-2022.8.23-cp310-cp310-win_amd64.whl (3.0 MB view details)

Uploaded CPython 3.10 Windows x86-64

pymatgen-2022.8.23-cp310-cp310-macosx_10_15_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.10 macOS 10.15+ x86-64

pymatgen-2022.8.23-cp39-cp39-win_amd64.whl (3.0 MB view details)

Uploaded CPython 3.9 Windows x86-64

pymatgen-2022.8.23-cp39-cp39-macosx_11_0_arm64.whl (3.0 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pymatgen-2022.8.23-cp39-cp39-macosx_10_15_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.9 macOS 10.15+ x86-64

pymatgen-2022.8.23-cp38-cp38-win_amd64.whl (3.0 MB view details)

Uploaded CPython 3.8 Windows x86-64

pymatgen-2022.8.23-cp38-cp38-macosx_10_15_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.8 macOS 10.15+ x86-64

File details

Details for the file pymatgen-2022.8.23.tar.gz.

File metadata

  • Download URL: pymatgen-2022.8.23.tar.gz
  • Upload date:
  • Size: 2.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.12

File hashes

Hashes for pymatgen-2022.8.23.tar.gz
Algorithm Hash digest
SHA256 e61c3eed297dc4865c21b0da95aea0fc76e78bd0ead3d2533494aefc05acb303
MD5 db841e1b3d43352aad823acdc1e56ebd
BLAKE2b-256 a9b9b20498c8ad40c0937d83d944e711327a8294169c45a297c89603c6d668a4

See more details on using hashes here.

File details

Details for the file pymatgen-2022.8.23-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pymatgen-2022.8.23-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 c8f0c16ac2c46e114e14e7604b9b265349eb1c74e6eae7736b90381af340db56
MD5 85895d12778c20d310810f1277511ebb
BLAKE2b-256 65affdb858e600c5d2e67e606c91f81ce692440beb30ada72b9800c3990eb316

See more details on using hashes here.

File details

Details for the file pymatgen-2022.8.23-cp310-cp310-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for pymatgen-2022.8.23-cp310-cp310-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 67eec72038e1a1689a982db9e4c8b3566462ceed3125e3f0e6e0cf4d676c261a
MD5 86854577371ec377a35ffdefbd6f8acc
BLAKE2b-256 611f84484a0a309ddc1e0b417e0b1900fdf4eeca99a2197e79dc06afeadbf3c0

See more details on using hashes here.

File details

Details for the file pymatgen-2022.8.23-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pymatgen-2022.8.23-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 1c7fd79fa191351210588037691d4ae83d74215155e08374d288fd0a8065c16d
MD5 892bfaf9ff28a4f5b3dde4fe6966c0d8
BLAKE2b-256 fd54395d7ef630a45b5990db8bed2615a59b193c30c55538f2f45fb8e8b11590

See more details on using hashes here.

File details

Details for the file pymatgen-2022.8.23-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pymatgen-2022.8.23-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1e89240ad0dd925e8cf344d3b931b61df04f4f4ce1c95f0b8f7c84b8fb2ab5fe
MD5 9c2379a8e10f3816baea6d3d954702be
BLAKE2b-256 44c5767f4b66cb3a42381b1d1e1b1d42a374325969571aa76784c0059ccc61da

See more details on using hashes here.

File details

Details for the file pymatgen-2022.8.23-cp39-cp39-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for pymatgen-2022.8.23-cp39-cp39-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 d006adbb1dff90842c559b8ce4e7478f8eabeb013093ee82bcbdca233eabb347
MD5 c39be0781140b241ad94283997356be5
BLAKE2b-256 d93497c57574fd03227ebec47cebd34ac7ba9f0a91b4fe2b165519883394a95e

See more details on using hashes here.

File details

Details for the file pymatgen-2022.8.23-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pymatgen-2022.8.23-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 420da9fde5a0b8172741a8c943cdb154d7656b8ec718a59b99906d2eb0ce07e2
MD5 8da5c5dc1d09bc19cbf2d600b5750de7
BLAKE2b-256 3f2b11a5719abb7b2de09bcce8faa4c5e258bbca39f4b49ab4c0bdf461f2d737

See more details on using hashes here.

File details

Details for the file pymatgen-2022.8.23-cp38-cp38-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for pymatgen-2022.8.23-cp38-cp38-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 b769b6677dbdedbc7edcc29ca7234cb2a466e84c420a23a74d64496ffcb2bffd
MD5 f816bdb607737f1a375dd7a74954ef4a
BLAKE2b-256 094e61b72b897e9f0306bebfa3caa9c1ce460a6aa784225f2e3ce3292217f82c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page