Skip to main content

Python Materials Genomics is a robust materials analysis code that defines core object representations for structures and molecules with support for many electronic structure codes. It is currently the core analysis code powering the Materials Project (https://materialsproject.org).

Project description

Logo

CI Status codecov PyPI Downloads Conda Downloads Requires Python 3.9+ arXiv

Pymatgen (Python Materials Genomics) is a robust, open-source Python library for materials analysis. These are some of the main features:

  1. Highly flexible classes for the representation of Element, Site, Molecule and Structure objects.
  2. Extensive input/output support, including support for VASP, ABINIT, CIF, Gaussian, XYZ, and many other file formats.
  3. Powerful analysis tools, including generation of phase diagrams, Pourbaix diagrams, diffusion analyses, reactions, etc.
  4. Electronic structure analyses, such as density of states and band structure.
  5. Integration with the Materials Project REST API.

Pymatgen is free to use. However, we also welcome your help to improve this library by making your contributions. These contributions can be in the form of additional tools or modules you develop, or feature requests and bug reports. The following are resources for pymatgen:

Why use pymatgen?

  1. It is (fairly) robust. Pymatgen is used by thousands of researchers and is the analysis code powering the Materials Project. The analysis it produces survives rigorous scrutiny every single day. Bugs tend to be found and corrected quickly. Pymatgen also uses Github Actions for continuous integration, which ensures that every new code passes a comprehensive suite of unit tests.
  2. It is well documented. A fairly comprehensive documentation has been written to help you get to grips with it quickly.
  3. It is open. You are free to use and contribute to pymatgen. It also means that pymatgen is continuously being improved. We will attribute any code you contribute to any publication you specify. Contributing to pymatgen means your research becomes more visible, which translates to greater impact.
  4. It is fast. Many of the core numerical methods in pymatgen have been optimized by vectorizing in numpy/scipy. This means that coordinate manipulations are fast. Pymatgen also comes with a complete system for handling periodic boundary conditions.
  5. It will be around. Pymatgen is not a pet research project. It is used in the well-established Materials Project. It is also actively being developed and maintained by the Materials Virtual Lab, the ABINIT group and many other research groups.
  6. A growing ecosystem of developers and add-ons. Pymatgen has contributions from materials scientists all over the world. We also now have an architecture to support add-ons that expand pymatgen's functionality even further. Check out the contributing page and add-ons page for details and examples.

Installation

The version at the Python Package Index PyPI is always the latest stable release that is relatively bug-free and can be installed via pip:

pip install pymatgen

If you'd like to use the latest unreleased changes on the main branch, you can install directly from GitHub:

pip install -U git+https://github.com/materialsproject/pymatgen

The minimum Python version is 3.9. Some extra functionality (e.g., generation of POTCARs) does require additional setup (see the pymatgen docs).

Change Log

Please check GitHub releases and commit history for the latest changes. A legacy changelog is still up at https://pymatgen.org/change_log.

Using pymatgen

Please refer to the official pymatgen docs for tutorials and examples.

How to cite pymatgen

If you use pymatgen in your research, please consider citing the following work:

Shyue Ping Ong, William Davidson Richards, Anubhav Jain, Geoffroy Hautier, Michael Kocher, Shreyas Cholia, Dan Gunter, Vincent Chevrier, Kristin A. Persson, Gerbrand Ceder. Python Materials Genomics (pymatgen): A Robust, Open-Source Python Library for Materials Analysis. Computational Materials Science, 2013, 68, 314-319. doi:10.1016/j.commatsci.2012.10.028

In addition, some of pymatgen's functionality is based on scientific advances/principles developed by the computational materials scientists in our team. Please refer to the pymatgen docs on how to cite them.

Soliciting contributions to an updated pymatgen paper

If you are a long-standing pymatgen contributor and would like to be involved in working on an updated pymatgen publication, please contact the maintainers @shyuep, @mkhorton and @janosh.

License

Pymatgen is released under the MIT License. The terms of the license are as follows:

The MIT License (MIT) Copyright (c) 2011-2012 MIT & LBNL

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

About the Pymatgen Development Team

Shyue Ping Ong of the Materials Virtual Lab started Pymatgen in 2011 and is still the project lead.

The pymatgen development team is the set of all contributors to the pymatgen project, including all subprojects.

Our Copyright Policy

Pymatgen uses a shared copyright model. Each contributor maintains copyright over their contributions to pymatgen. But, it is important to note that these contributions are typically only changes to the repositories. Thus, the pymatgen source code, in its entirety is not the copyright of any single person or institution. Instead, it is the collective copyright of the entire pymatgen Development Team. If individual contributors want to maintain a record of what changes/contributions they have specific copyright on, they should indicate their copyright in the commit message of the change, when they commit the change to one of the pymatgen repositories.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pymatgen-2023.10.11.tar.gz (7.3 MB view details)

Uploaded Source

Built Distributions

pymatgen-2023.10.11-cp311-cp311-win_amd64.whl (7.9 MB view details)

Uploaded CPython 3.11 Windows x86-64

pymatgen-2023.10.11-cp311-cp311-win32.whl (7.8 MB view details)

Uploaded CPython 3.11 Windows x86

pymatgen-2023.10.11-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pymatgen-2023.10.11-cp311-cp311-macosx_10_9_x86_64.whl (7.9 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pymatgen-2023.10.11-cp310-cp310-win_amd64.whl (7.9 MB view details)

Uploaded CPython 3.10 Windows x86-64

pymatgen-2023.10.11-cp310-cp310-win32.whl (7.8 MB view details)

Uploaded CPython 3.10 Windows x86

pymatgen-2023.10.11-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pymatgen-2023.10.11-cp310-cp310-macosx_10_9_x86_64.whl (7.9 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pymatgen-2023.10.11-cp39-cp39-win_amd64.whl (7.9 MB view details)

Uploaded CPython 3.9 Windows x86-64

pymatgen-2023.10.11-cp39-cp39-win32.whl (7.8 MB view details)

Uploaded CPython 3.9 Windows x86

pymatgen-2023.10.11-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pymatgen-2023.10.11-cp39-cp39-macosx_10_9_x86_64.whl (7.9 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

File details

Details for the file pymatgen-2023.10.11.tar.gz.

File metadata

  • Download URL: pymatgen-2023.10.11.tar.gz
  • Upload date:
  • Size: 7.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for pymatgen-2023.10.11.tar.gz
Algorithm Hash digest
SHA256 2b6c0012ffd942f6aef89a63c7e20297cf5c4e0533d5f7604110d4485b5176b6
MD5 d1d8271d147774fe2d76cd6241b80d3e
BLAKE2b-256 f274d184c44c5999427956e418a1b41cd681fa1c6472692328e864ab3f902ddf

See more details on using hashes here.

File details

Details for the file pymatgen-2023.10.11-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pymatgen-2023.10.11-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 97d1bc956db907e4c3bcee33d469f6b2df1dae0989b2b944554180eb67cdad83
MD5 1923d1fa177a458985150482552b0863
BLAKE2b-256 8280fff2ab6e62848196e67392d71c1e214d76d7708217eb5421ca3b41b0c4ee

See more details on using hashes here.

File details

Details for the file pymatgen-2023.10.11-cp311-cp311-win32.whl.

File metadata

File hashes

Hashes for pymatgen-2023.10.11-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 327ecda0bf3acb8783e66111b3504c196d9be6b6f0f637419aa3c3c5b1d013cd
MD5 181c248073cddf58668cef0d02b71124
BLAKE2b-256 f04dde52e82bdb3e5fb396f6d07c3ed36c180532f831e005146783b3ea10f240

See more details on using hashes here.

File details

Details for the file pymatgen-2023.10.11-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pymatgen-2023.10.11-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8ae0c2c8b33e417764d36ed374db8ecc412198caffff2bfcdb7e941c8b838c10
MD5 341289f8ae1be11b062fa954d7ce0c44
BLAKE2b-256 e12eaae0486b380cef9a2ac7e1e12bcbc58556f4c2e424eb0f2594f65c558858

See more details on using hashes here.

File details

Details for the file pymatgen-2023.10.11-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pymatgen-2023.10.11-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 bb70a5b98d800f5ec6ef67cc8c0245a9ee200e20d9e9aa055473dcba974e2352
MD5 45fccc7e1720a72aeeec3279208d853c
BLAKE2b-256 b4a23154e79192e615ff700e6fd0111590433ac20c6b090c047ea0281a2e68aa

See more details on using hashes here.

File details

Details for the file pymatgen-2023.10.11-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pymatgen-2023.10.11-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 ea6a5d818b528c407c322d14af5696e95bbb25a6b89859acccbf80aa5956d388
MD5 a68001c91c76e549b8351d1c5eeee587
BLAKE2b-256 9431118bbb55e27a2e408061883951d24a9549e52790c9f472da986814fa55a2

See more details on using hashes here.

File details

Details for the file pymatgen-2023.10.11-cp310-cp310-win32.whl.

File metadata

File hashes

Hashes for pymatgen-2023.10.11-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 c3b65ad941ef5589a8833c4d8d384d8b75668d2ea9c32b7d6dc2252212fdb66c
MD5 a5613e023ec973b42c265646062656d2
BLAKE2b-256 5a033170dbf4d800dff34cbadd6c83f99f236acd42d16293904177228043b1c9

See more details on using hashes here.

File details

Details for the file pymatgen-2023.10.11-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pymatgen-2023.10.11-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3ac4fa0954071a527ef43842d5750ba98a7c5da3e4207167a99723f4efd00a4f
MD5 3a856b33f6a64edb58f5b6985c208990
BLAKE2b-256 c2c14828b79822bfe12ba89c6ab8b271746dec695318f7bad47168a71b11c095

See more details on using hashes here.

File details

Details for the file pymatgen-2023.10.11-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pymatgen-2023.10.11-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c2c96e74d8fe89fdcf428a220bf6ab423c5a331f11a8540b8644fa6182a6482c
MD5 225e64cb7e04a016ec246f7809275ce2
BLAKE2b-256 1f5344b5986a59cef0fe28c88d84395c1656958ef8d7f523da60aa937127ed51

See more details on using hashes here.

File details

Details for the file pymatgen-2023.10.11-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pymatgen-2023.10.11-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 6eef82a5fbcf0438e1c5105e66f68ea1959dbea9a0fbc3d53dd7200645c9e49f
MD5 64c0aa708c0b5fb5831f42200e4dfaf2
BLAKE2b-256 87db033ff4f7b2a3fe9e662885981e992f0f2a7657d57f8e743a967b35746af1

See more details on using hashes here.

File details

Details for the file pymatgen-2023.10.11-cp39-cp39-win32.whl.

File metadata

  • Download URL: pymatgen-2023.10.11-cp39-cp39-win32.whl
  • Upload date:
  • Size: 7.8 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for pymatgen-2023.10.11-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 72089d8a36e689544b1eccd16b5e4682223f4d85e7bf439a69266dd052f42251
MD5 9d0bdd66ff8c73b341003b018d1c5227
BLAKE2b-256 789256a8dddfc411a0c92809b0bc93f5950bd5b71e9608e3e0f42b727b693c7b

See more details on using hashes here.

File details

Details for the file pymatgen-2023.10.11-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pymatgen-2023.10.11-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ddb3dbc722009dc7011527bb545d64741bb4dfd1ec7ece61b0f604d503cee6c8
MD5 5d6726bd675316d38cf87c9fed2178f8
BLAKE2b-256 ee2a8bb46fa8db92a086554f1e150770265995eee4b019698e159bc322a27a8d

See more details on using hashes here.

File details

Details for the file pymatgen-2023.10.11-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pymatgen-2023.10.11-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 af9161a6e59d9974fd4dfb88dc52a8fc1016fb58ca0b87fd9689098dc505d1ff
MD5 84ce2183c350d9923ee29e24567a1ea3
BLAKE2b-256 b1c64da494bd057851dbe933bfd04ddde36112ddd2cd6624f8d2d3f1ebd20d09

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page