Skip to main content

Python Materials Genomics is a robust materials analysis code that defines core object representations for structures and molecules with support for many electronic structure codes. It is currently the core analysis code powering the Materials Project (https://materialsproject.org).

Project description

Logo

CI Status codecov PyPI Downloads Conda Downloads Requires Python 3.9+ arXiv

Pymatgen (Python Materials Genomics) is a robust, open-source Python library for materials analysis. These are some of the main features:

  1. Highly flexible classes for the representation of Element, Site, Molecule and Structure objects.
  2. Extensive input/output support, including support for VASP, ABINIT, CIF, Gaussian, XYZ, and many other file formats.
  3. Powerful analysis tools, including generation of phase diagrams, Pourbaix diagrams, diffusion analyses, reactions, etc.
  4. Electronic structure analyses, such as density of states and band structure.
  5. Integration with the Materials Project REST API.

Pymatgen is free to use. However, we also welcome your help to improve this library by making your contributions. These contributions can be in the form of additional tools or modules you develop, or feature requests and bug reports. The following are resources for pymatgen:

Why use pymatgen?

  1. It is (fairly) robust. Pymatgen is used by thousands of researchers and is the analysis code powering the Materials Project. The analysis it produces survives rigorous scrutiny every single day. Bugs tend to be found and corrected quickly. Pymatgen also uses Github Actions for continuous integration, which ensures that every new code passes a comprehensive suite of unit tests.
  2. It is well documented. A fairly comprehensive documentation has been written to help you get to grips with it quickly.
  3. It is open. You are free to use and contribute to pymatgen. It also means that pymatgen is continuously being improved. We will attribute any code you contribute to any publication you specify. Contributing to pymatgen means your research becomes more visible, which translates to greater impact.
  4. It is fast. Many of the core numerical methods in pymatgen have been optimized by vectorizing in numpy/scipy. This means that coordinate manipulations are fast. Pymatgen also comes with a complete system for handling periodic boundary conditions.
  5. It will be around. Pymatgen is not a pet research project. It is used in the well-established Materials Project. It is also actively being developed and maintained by the Materials Virtual Lab, the ABINIT group and many other research groups.
  6. A growing ecosystem of developers and add-ons. Pymatgen has contributions from materials scientists all over the world. We also now have an architecture to support add-ons that expand pymatgen's functionality even further. Check out the contributing page and add-ons page for details and examples.

Installation

The version at the Python Package Index PyPI is always the latest stable release that is relatively bug-free and can be installed via pip:

pip install pymatgen

If you'd like to use the latest unreleased changes on the main branch, you can install directly from GitHub:

pip install -U git+https://github.com/materialsproject/pymatgen

The minimum Python version is 3.9. Some extra functionality (e.g., generation of POTCARs) does require additional setup (see the pymatgen docs).

Change Log

Please check GitHub releases and commit history for the latest changes. A legacy changelog is still up at https://pymatgen.org/change_log.

Using pymatgen

Please refer to the official pymatgen docs for tutorials and examples.

How to cite pymatgen

If you use pymatgen in your research, please consider citing the following work:

Shyue Ping Ong, William Davidson Richards, Anubhav Jain, Geoffroy Hautier, Michael Kocher, Shreyas Cholia, Dan Gunter, Vincent Chevrier, Kristin A. Persson, Gerbrand Ceder. Python Materials Genomics (pymatgen): A Robust, Open-Source Python Library for Materials Analysis. Computational Materials Science, 2013, 68, 314-319. doi:10.1016/j.commatsci.2012.10.028

In addition, some of pymatgen's functionality is based on scientific advances/principles developed by the computational materials scientists in our team. Please refer to the pymatgen docs on how to cite them.

Soliciting contributions to 2nd pymatgen paper

If you are a long-standing pymatgen contributor and would like to be involved in working on an updated pymatgen publication, please fill out this co-author registration form or contact @shyuep, @mkhorton and @janosh with questions.

License

Pymatgen is released under the MIT License. The terms of the license are as follows:

The MIT License (MIT) Copyright (c) 2011-2012 MIT & LBNL

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

About the Pymatgen Development Team

Shyue Ping Ong of the Materials Virtual Lab started Pymatgen in 2011 and is still the project lead.

The pymatgen development team is the set of all contributors to the pymatgen project, including all subprojects.

Our Copyright Policy

Pymatgen uses a shared copyright model. Each contributor maintains copyright over their contributions to pymatgen. But, it is important to note that these contributions are typically only changes to the repositories. Thus, the pymatgen source code, in its entirety is not the copyright of any single person or institution. Instead, it is the collective copyright of the entire pymatgen Development Team. If individual contributors want to maintain a record of what changes/contributions they have specific copyright on, they should indicate their copyright in the commit message of the change, when they commit the change to one of the pymatgen repositories.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pymatgen-2023.11.10.tar.gz (6.8 MB view details)

Uploaded Source

Built Distributions

pymatgen-2023.11.10-cp311-cp311-win_amd64.whl (7.4 MB view details)

Uploaded CPython 3.11 Windows x86-64

pymatgen-2023.11.10-cp311-cp311-win32.whl (7.3 MB view details)

Uploaded CPython 3.11 Windows x86

pymatgen-2023.11.10-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (9.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pymatgen-2023.11.10-cp311-cp311-macosx_10_9_x86_64.whl (7.4 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pymatgen-2023.11.10-cp310-cp310-win_amd64.whl (7.4 MB view details)

Uploaded CPython 3.10 Windows x86-64

pymatgen-2023.11.10-cp310-cp310-win32.whl (7.3 MB view details)

Uploaded CPython 3.10 Windows x86

pymatgen-2023.11.10-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (9.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pymatgen-2023.11.10-cp310-cp310-macosx_10_9_x86_64.whl (7.4 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pymatgen-2023.11.10-cp39-cp39-win_amd64.whl (7.4 MB view details)

Uploaded CPython 3.9 Windows x86-64

pymatgen-2023.11.10-cp39-cp39-win32.whl (7.3 MB view details)

Uploaded CPython 3.9 Windows x86

pymatgen-2023.11.10-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (9.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pymatgen-2023.11.10-cp39-cp39-macosx_10_9_x86_64.whl (7.4 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

File details

Details for the file pymatgen-2023.11.10.tar.gz.

File metadata

  • Download URL: pymatgen-2023.11.10.tar.gz
  • Upload date:
  • Size: 6.8 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for pymatgen-2023.11.10.tar.gz
Algorithm Hash digest
SHA256 318360e641a4d8f931dcb3c3b9317d1c066742ad3dcf9f143bac615f6dafd02e
MD5 2ce3323ab79d4cd24998471018612375
BLAKE2b-256 3cbaaafdc45ab74537b2037bf9a193ca3b14fbfb2b097f1d7a5395089341ee27

See more details on using hashes here.

File details

Details for the file pymatgen-2023.11.10-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pymatgen-2023.11.10-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 e90969bf9a4afdb330399e3dcf08085468e8f2e0553966e0da67d70c169b6d0e
MD5 907bd7db3e707f874fe253e0e5dfb669
BLAKE2b-256 29051fd75340276ab3aea2381a628ffd33091e554b6a97a71141769abebacd9e

See more details on using hashes here.

File details

Details for the file pymatgen-2023.11.10-cp311-cp311-win32.whl.

File metadata

File hashes

Hashes for pymatgen-2023.11.10-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 e46bcda0052ef4799eb19d01f766d4f52b43030bc2b4b083a2f271ea47f5ed22
MD5 1526834d894a09b3ad2aa7bbec370495
BLAKE2b-256 bbfc8728ab7cc6b55da6120db06ac45637cc9d2526802db2cda20f1f13d4833b

See more details on using hashes here.

File details

Details for the file pymatgen-2023.11.10-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pymatgen-2023.11.10-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e4a9009a5eaae8ed2e6874ce87799c6ebb835163054158e1b42b954a2961cc91
MD5 1e0e6c7f840b93e614ae4986c30589eb
BLAKE2b-256 5127cf3d1c526946c578e84eb99f5fff6b32a7fa05f54c45ac6cb3150dab3d08

See more details on using hashes here.

File details

Details for the file pymatgen-2023.11.10-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pymatgen-2023.11.10-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 299ff5d755bdd67203c56feba9a432435d4267100daf08ddf0b34e178d6d79a6
MD5 c18c4ce2ad447e4b9400087eca4ad885
BLAKE2b-256 21e71ae52f0920ca056f79cfd9f59698464473adb820fe89f39de1e4025e8856

See more details on using hashes here.

File details

Details for the file pymatgen-2023.11.10-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pymatgen-2023.11.10-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 5986d8c449bc39a9ddd83dc661c804489b84d6ea25f0c710373bf89baf91f8c1
MD5 802610ea30982f784685878082c0e400
BLAKE2b-256 376606f1d7091080449e053a7b7113723566609a25bc7edc3c980a40332b2ab6

See more details on using hashes here.

File details

Details for the file pymatgen-2023.11.10-cp310-cp310-win32.whl.

File metadata

File hashes

Hashes for pymatgen-2023.11.10-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 bdb7e4914c63af5e68c3088cca297f684d494c114c81acc4b7658dd5928193be
MD5 1a89ab2c8c8db579219413cf70eb4ab1
BLAKE2b-256 dcd84123cfff2dc7f53702a9c978fc2c8ef0369b6fdda943637875712de0d83d

See more details on using hashes here.

File details

Details for the file pymatgen-2023.11.10-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pymatgen-2023.11.10-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0e69cc4b711b632674d346cd5b11acc080f3942a6707d4f035f38d896ca7e39b
MD5 9132a8d2846d698df33f1eedd15b2c88
BLAKE2b-256 a8dfff00bc5e0eee66c76515443ca0b4588f61ca371272272f299f6692f04700

See more details on using hashes here.

File details

Details for the file pymatgen-2023.11.10-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pymatgen-2023.11.10-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 eb8dbd2dfb23498c946179a6ad8690a3285afe232b49a4a2df1ffca3fca1a385
MD5 7b838cbba4c57dfe4d2888425a4f87e7
BLAKE2b-256 61ed851ae9483f9adc54c63277800303e7670ab8c3cfdb23c01fe5cd742dbbe0

See more details on using hashes here.

File details

Details for the file pymatgen-2023.11.10-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pymatgen-2023.11.10-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 a67bd0546b307194758cc6149eff83e7f1610476347ba044c9bb3a9810ef2bcf
MD5 278a84f655545778a743c0ceb1e9b737
BLAKE2b-256 79cdd06b49ee72f602f72da7fd85be5bb6d68972e5af6fa789ca8872ac7de2dd

See more details on using hashes here.

File details

Details for the file pymatgen-2023.11.10-cp39-cp39-win32.whl.

File metadata

  • Download URL: pymatgen-2023.11.10-cp39-cp39-win32.whl
  • Upload date:
  • Size: 7.3 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for pymatgen-2023.11.10-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 35a532ad875dda5b8f4647cb1a8105ee91153a92536fddd43dcad355de3d76dd
MD5 80bc503094f9f9441aa984f593400763
BLAKE2b-256 7f6a4b35ef0053ad8717e11c58a608dfa3a216ad97edbcef1e0885ab5d970fd1

See more details on using hashes here.

File details

Details for the file pymatgen-2023.11.10-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pymatgen-2023.11.10-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a9388e04dbdd7b1a7959a4f07318b017bbeddebec351ed3c648fc011a9d25cd7
MD5 6de1fdd3ff4b9680f34ec4061b19095f
BLAKE2b-256 fa260b615555bf558048c4e642bd274f1677e586082df58118ae5c0befcbadd2

See more details on using hashes here.

File details

Details for the file pymatgen-2023.11.10-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pymatgen-2023.11.10-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4d8184e33d7b9738bf070d8dd907dbc7042024e840363bf63175485a339a4103
MD5 0629574f2089e9899c5f1a276aa4d82d
BLAKE2b-256 63a8ff39446571dfb622d853a261e0da13ae3827b9e7c90651c19cdd160389c4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page