Skip to main content

Python Materials Genomics is a robust materials analysis code that defines core object representations for structures and molecules with support for many electronic structure codes. It is currently the core analysis code powering the Materials Project (https://materialsproject.org).

Project description

Logo

CI Status Coveralls PyPI Downloads Conda Downloads Requires Python 3.8+

Pymatgen (Python Materials Genomics) is a robust, open-source Python library for materials analysis. These are some of the main features:

  1. Highly flexible classes for the representation of Element, Site, Molecule and Structure objects.
  2. Extensive input/output support, including support for VASP, ABINIT, CIF, Gaussian, XYZ, and many other file formats.
  3. Powerful analysis tools, including generation of phase diagrams, Pourbaix diagrams, diffusion analyses, reactions, etc.
  4. Electronic structure analyses, such as density of states and band structure.
  5. Integration with the Materials Project REST API.

Pymatgen is free to use. However, we also welcome your help to improve this library by making your contributions. These contributions can be in the form of additional tools or modules you develop, or feature requests and bug reports. The following are resources for pymatgen:

Why use pymatgen?

  1. It is (fairly) robust. Pymatgen is used by thousands of researchers and is the analysis code powering the Materials Project. The analysis it produces survives rigorous scrutiny every single day. Bugs tend to be found and corrected quickly. Pymatgen also uses Github Actions for continuous integration, which ensures that every new code passes a comprehensive suite of unit tests.
  2. It is well documented. A fairly comprehensive documentation has been written to help you get to grips with it quickly.
  3. It is open. You are free to use and contribute to pymatgen. It also means that pymatgen is continuously being improved. We will attribute any code you contribute to any publication you specify. Contributing to pymatgen means your research becomes more visible, which translates to greater impact.
  4. It is fast. Many of the core numerical methods in pymatgen have been optimized by vectorizing in numpy/scipy. This means that coordinate manipulations are extremely fast and are in fact comparable to codes written in other languages. Pymatgen also comes with a complete system for handling periodic boundary conditions.
  5. It will be around. Pymatgen is not a pet research project. It is used in the well-established Materials Project. It is also actively being developed and maintained by the Materials Virtual Lab, the ABINIT group and many other research groups.
  6. A growing ecosystem of developers and add-ons. Pymatgen has contributions from materials scientists all over the world. We also now have an architecture to support add-ons that expand pymatgen's functionality even further. Check out the contributing page and add-ons page for details and examples.

Installation

The version at the Python Package Index (PyPI) is always the latest stable release that is relatively bug-free and can be installed via pip:

pip install pymatgen

If you'd like to use the latest unreleased changes on the main branch, you can install directly from GitHub:

pip install -U git+https://github.com/materialsproject/pymatgen

The minimum Python version is 3.8. Some extra functionality (e.g., generation of POTCARs) does require additional setup (see the pymatgen page).

Change Log

Please check GitHub releases and commit history for the latest changes. A legacy changelog is still up at https://pymatgen.org/change_log.

Using pymatgen

Please refer to the official pymatgen page for tutorials and examples.

How to cite pymatgen

If you use pymatgen in your research, please consider citing the following work:

Shyue Ping Ong, William Davidson Richards, Anubhav Jain, Geoffroy Hautier, Michael Kocher, Shreyas Cholia, Dan Gunter, Vincent Chevrier, Kristin A. Persson, Gerbrand Ceder. Python Materials Genomics (pymatgen): A Robust, Open-Source Python Library for Materials Analysis. Computational Materials Science, 2013, 68, 314-319. doi:10.1016/j.commatsci.2012.10.028

In addition, some of pymatgen's functionality is based on scientific advances/principles developed by the computational materials scientists in our team. Please refer to pymatgen's documentation on how to cite them.

License

Pymatgen is released under the MIT License. The terms of the license are as follows:

The MIT License (MIT) Copyright (c) 2011-2012 MIT & LBNL

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

About the Pymatgen Development Team

Shyue Ping Ong of the Materials Virtual Lab started Pymatgen in 2011 and is still the project lead.

The pymatgen development team is the set of all contributors to the pymatgen project, including all subprojects.

Our Copyright Policy

Pymatgen uses a shared copyright model. Each contributor maintains copyright over their contributions to pymatgen. But, it is important to note that these contributions are typically only changes to the repositories. Thus, the pymatgen source code, in its entirety is not the copyright of any single person or institution. Instead, it is the collective copyright of the entire pymatgen Development Team. If individual contributors want to maintain a record of what changes/contributions they have specific copyright on, they should indicate their copyright in the commit message of the change, when they commit the change to one of the pymatgen repositories.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pymatgen-2023.3.10.tar.gz (9.7 MB view details)

Uploaded Source

Built Distributions

pymatgen-2023.3.10-cp311-cp311-win_amd64.whl (10.2 MB view details)

Uploaded CPython 3.11 Windows x86-64

pymatgen-2023.3.10-cp311-cp311-win32.whl (10.2 MB view details)

Uploaded CPython 3.11 Windows x86

pymatgen-2023.3.10-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.5 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pymatgen-2023.3.10-cp311-cp311-macosx_10_9_x86_64.whl (10.2 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pymatgen-2023.3.10-cp310-cp310-win_amd64.whl (10.2 MB view details)

Uploaded CPython 3.10 Windows x86-64

pymatgen-2023.3.10-cp310-cp310-win32.whl (10.2 MB view details)

Uploaded CPython 3.10 Windows x86

pymatgen-2023.3.10-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pymatgen-2023.3.10-cp310-cp310-macosx_10_9_x86_64.whl (10.2 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pymatgen-2023.3.10-cp39-cp39-win_amd64.whl (10.2 MB view details)

Uploaded CPython 3.9 Windows x86-64

pymatgen-2023.3.10-cp39-cp39-win32.whl (10.2 MB view details)

Uploaded CPython 3.9 Windows x86

pymatgen-2023.3.10-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pymatgen-2023.3.10-cp39-cp39-macosx_11_0_arm64.whl (10.2 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pymatgen-2023.3.10-cp39-cp39-macosx_10_9_x86_64.whl (10.2 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pymatgen-2023.3.10-cp38-cp38-win_amd64.whl (10.2 MB view details)

Uploaded CPython 3.8 Windows x86-64

pymatgen-2023.3.10-cp38-cp38-win32.whl (10.2 MB view details)

Uploaded CPython 3.8 Windows x86

pymatgen-2023.3.10-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pymatgen-2023.3.10-cp38-cp38-macosx_10_9_x86_64.whl (10.2 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file pymatgen-2023.3.10.tar.gz.

File metadata

  • Download URL: pymatgen-2023.3.10.tar.gz
  • Upload date:
  • Size: 9.7 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for pymatgen-2023.3.10.tar.gz
Algorithm Hash digest
SHA256 20a5d1681e2951d2710d5358197b5b58992e2b0ec4217a5ba966cf28513c1283
MD5 90b6b803315644761a1815738383eb22
BLAKE2b-256 e323d2203460dad736b79fd29ea715d3b60cba490e8a0d719d5cb1014b39c913

See more details on using hashes here.

File details

Details for the file pymatgen-2023.3.10-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pymatgen-2023.3.10-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 aefc1eed410195c7ae2dd98f02954d56f3a2d975a8b9d50c87402a84a2c849c3
MD5 7b66e74fc76ebe67ef05697b6dab9363
BLAKE2b-256 23ef19182c8acc809680a2da80e88e86e65c0b5ff705e870bd9698fe0855323a

See more details on using hashes here.

File details

Details for the file pymatgen-2023.3.10-cp311-cp311-win32.whl.

File metadata

File hashes

Hashes for pymatgen-2023.3.10-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 20115f1a822e5ba5d6379269aa7324299e085b26ded2a9a32d86669d16af154e
MD5 69b191509ee424f165b10e204d8aa347
BLAKE2b-256 968f1f0db6a97c60632b6a561ab941426f6131ccda606946a40b3f74ff3a8a5f

See more details on using hashes here.

File details

Details for the file pymatgen-2023.3.10-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pymatgen-2023.3.10-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d71a8f51f821b2a5a5c82b4b9a5e91a6319e86d945b06927169029e384dd0c1d
MD5 d3fabf4bd1f0c847994f95fd575d7858
BLAKE2b-256 c9153b4ad514ba1e6aaa2238a5c94ffe0edb2c049ae54f4f3cec375c596b2749

See more details on using hashes here.

File details

Details for the file pymatgen-2023.3.10-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pymatgen-2023.3.10-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 de07fdacc717b117188887e501f0a79c6eb2fca6cb34de8998511ddb854b7796
MD5 61b4dc86ed23e84c57619ea5de9a1af4
BLAKE2b-256 8c8e7557a0ff7f9dd25b87e6e8ca8677088b72abcfee4c825f714ac85f1ef58d

See more details on using hashes here.

File details

Details for the file pymatgen-2023.3.10-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pymatgen-2023.3.10-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 1f60993a1e382d4e506c2bcf91f030e12a62f55a26b725e3aa1372676961a53e
MD5 48b170242599da46c18a8d6bfa38cd87
BLAKE2b-256 fc2ee8ae7708f2b819f903b740b12746b4d7c932cc9e3c0d935c5014f9249738

See more details on using hashes here.

File details

Details for the file pymatgen-2023.3.10-cp310-cp310-win32.whl.

File metadata

File hashes

Hashes for pymatgen-2023.3.10-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 e28618dc105eb8ce03564f1a71c916fb6152a1f985e82adda8e0048cc563244a
MD5 9b30cc7c918968558888b3458bae4430
BLAKE2b-256 b7b6757843d16a06a5de317724f0917697be05e394bde4ba90df8ad7e2ef3c67

See more details on using hashes here.

File details

Details for the file pymatgen-2023.3.10-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pymatgen-2023.3.10-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5bab9adc5d4c47f083ee604c68318a7d0a58a891d1fa84b5c1df20dbf532fdd1
MD5 a2a7bfddec80ce3b9c03fada5e8c4c15
BLAKE2b-256 9ea43c425415064b8ccc92b442927299324c40711178e06f761d7f0c0cb66505

See more details on using hashes here.

File details

Details for the file pymatgen-2023.3.10-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pymatgen-2023.3.10-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4edb43bfb6ad933ddec3421896964f222f67659455cb18635bd61144715566ad
MD5 6df9440a25feb5c1b7983347175f9666
BLAKE2b-256 821f9ddb531915d90220050ab000019dbad20f88307b43b37b899649d9ecaedf

See more details on using hashes here.

File details

Details for the file pymatgen-2023.3.10-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pymatgen-2023.3.10-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 7de2352ab7f11da244dbdfd39e2b3fabb49a1c5c077a4adaedc31b6ed745f231
MD5 72f770b7eca4215853cbe309390771ad
BLAKE2b-256 a212c50967b34e26b48e55a1ee461f73b881e80b0abce13eb6633fe0c77c0c81

See more details on using hashes here.

File details

Details for the file pymatgen-2023.3.10-cp39-cp39-win32.whl.

File metadata

  • Download URL: pymatgen-2023.3.10-cp39-cp39-win32.whl
  • Upload date:
  • Size: 10.2 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.6

File hashes

Hashes for pymatgen-2023.3.10-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 4da05520f802233c7e94fe2db10e6de21a22b3068c30ee0895f6a85d3e56046a
MD5 1bc020748c247162d7d0097ef11c0197
BLAKE2b-256 3a488b1cd6d918c69555765f1aee30b250fc3e0e79c7e0b0f6e64d68d7723dcb

See more details on using hashes here.

File details

Details for the file pymatgen-2023.3.10-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pymatgen-2023.3.10-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c790e6bed461d59fab85e3e783a758e70b15a20dd0c21a9ef83fbc8866a49ba7
MD5 5852b4662901cd97169c8bee651efdb5
BLAKE2b-256 eef3d1a94f1ef671a768000c4909252f8c410de67737c867609ea20a4e79cb0e

See more details on using hashes here.

File details

Details for the file pymatgen-2023.3.10-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pymatgen-2023.3.10-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c5e136dd2087dc442d098a1f5795bfcc15d4a2cc6167da2438f30a79b76c1033
MD5 188560f75afc59a87fcfa39fbbcb8171
BLAKE2b-256 faf58f43ab1b98a72b8f30763191f2813aeb64af53a58ba5d76517d542530143

See more details on using hashes here.

File details

Details for the file pymatgen-2023.3.10-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pymatgen-2023.3.10-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 aa8e5012181c422eb323c91865ae05166071540fb0f7dae41399b8bfe5d8e09d
MD5 bb63cee71e3ee9bbc5f1b865ec6e0306
BLAKE2b-256 4f3c4639ca6aa4a22980cab148baa207aa1361f5694fbff1ef488ef0b9c84158

See more details on using hashes here.

File details

Details for the file pymatgen-2023.3.10-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pymatgen-2023.3.10-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 7ad80e018a586e9e002c7906e69028a136ac5b0693091ab22ae023b71c8e5e6b
MD5 ed4c7e8a915d4ed803cb190c61fe88dc
BLAKE2b-256 2cc4e63ed2e578ca8ab3bdf4f0813034f50cd2d461c835a5bd5f32fd4a07d75d

See more details on using hashes here.

File details

Details for the file pymatgen-2023.3.10-cp38-cp38-win32.whl.

File metadata

  • Download URL: pymatgen-2023.3.10-cp38-cp38-win32.whl
  • Upload date:
  • Size: 10.2 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.6

File hashes

Hashes for pymatgen-2023.3.10-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 8b8ce3b9032badd4fb765a97ca5101420503031e767927158ae6e278df15ff83
MD5 ac278875e125baec3826c6d1baba610f
BLAKE2b-256 d5d71abe0609df406e19f90ae9a0c59e87fa82816d13003b3e2fd49e7ee06aae

See more details on using hashes here.

File details

Details for the file pymatgen-2023.3.10-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pymatgen-2023.3.10-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 dc1da34df8c7b09d25e76b94b2d2827a5824ca3441913763613baedc7aee53f8
MD5 b860c881b1a252647d7607009e3aba1c
BLAKE2b-256 6547ddd6ab301eb7660c4d7fd005633f2e5456f70839c325b100d4c664aa3953

See more details on using hashes here.

File details

Details for the file pymatgen-2023.3.10-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pymatgen-2023.3.10-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ed46f937f16b356e896e032d682352f5b9cded9a558a4800b1a5fdf71356b19f
MD5 62e107ad52bee6251f6d9c2244310b0f
BLAKE2b-256 c0608a95addfa1028489b56d743efcb6bfb59ae6cb26d9c94a6b60bccc61deb0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page