Skip to main content

Python Materials Genomics is a robust materials analysis code that defines core object representations for structures and molecules with support for many electronic structure codes. It is currently the core analysis code powering the Materials Project (https://materialsproject.org).

Project description

Logo

CI Status Coveralls PyPI Downloads Conda Downloads Requires Python 3.8+

Pymatgen (Python Materials Genomics) is a robust, open-source Python library for materials analysis. These are some of the main features:

  1. Highly flexible classes for the representation of Element, Site, Molecule and Structure objects.
  2. Extensive input/output support, including support for VASP, ABINIT, CIF, Gaussian, XYZ, and many other file formats.
  3. Powerful analysis tools, including generation of phase diagrams, Pourbaix diagrams, diffusion analyses, reactions, etc.
  4. Electronic structure analyses, such as density of states and band structure.
  5. Integration with the Materials Project REST API.

Pymatgen is free to use. However, we also welcome your help to improve this library by making your contributions. These contributions can be in the form of additional tools or modules you develop, or feature requests and bug reports. The following are resources for pymatgen:

Why use pymatgen?

  1. It is (fairly) robust. Pymatgen is used by thousands of researchers and is the analysis code powering the Materials Project. The analysis it produces survives rigorous scrutiny every single day. Bugs tend to be found and corrected quickly. Pymatgen also uses Github Actions for continuous integration, which ensures that every new code passes a comprehensive suite of unit tests.
  2. It is well documented. A fairly comprehensive documentation has been written to help you get to grips with it quickly.
  3. It is open. You are free to use and contribute to pymatgen. It also means that pymatgen is continuously being improved. We will attribute any code you contribute to any publication you specify. Contributing to pymatgen means your research becomes more visible, which translates to greater impact.
  4. It is fast. Many of the core numerical methods in pymatgen have been optimized by vectorizing in numpy/scipy. This means that coordinate manipulations are extremely fast and are in fact comparable to codes written in other languages. Pymatgen also comes with a complete system for handling periodic boundary conditions.
  5. It will be around. Pymatgen is not a pet research project. It is used in the well-established Materials Project. It is also actively being developed and maintained by the Materials Virtual Lab, the ABINIT group and many other research groups.
  6. A growing ecosystem of developers and add-ons. Pymatgen has contributions from materials scientists all over the world. We also now have an architecture to support add-ons that expand pymatgen's functionality even further. Check out the contributing page and add-ons page for details and examples.

Installation

The version at the Python Package Index (PyPI) is always the latest stable release that is relatively bug-free and can be installed via pip:

pip install pymatgen

If you'd like to use the latest unreleased changes on the main branch, you can install directly from GitHub:

pip install -U git+https://github.com/materialsproject/pymatgen

The minimum Python version is 3.8. Some extra functionality (e.g., generation of POTCARs) does require additional setup (see the pymatgen page).

Change Log

Please check GitHub releases and commit history for the latest changes. A legacy changelog is still up at https://pymatgen.org/change_log.

Using pymatgen

Please refer to the official pymatgen page for tutorials and examples.

How to cite pymatgen

If you use pymatgen in your research, please consider citing the following work:

Shyue Ping Ong, William Davidson Richards, Anubhav Jain, Geoffroy Hautier, Michael Kocher, Shreyas Cholia, Dan Gunter, Vincent Chevrier, Kristin A. Persson, Gerbrand Ceder. Python Materials Genomics (pymatgen): A Robust, Open-Source Python Library for Materials Analysis. Computational Materials Science, 2013, 68, 314-319. doi:10.1016/j.commatsci.2012.10.028

In addition, some of pymatgen's functionality is based on scientific advances/principles developed by the computational materials scientists in our team. Please refer to pymatgen's documentation on how to cite them.

License

Pymatgen is released under the MIT License. The terms of the license are as follows:

The MIT License (MIT) Copyright (c) 2011-2012 MIT & LBNL

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

About the Pymatgen Development Team

Shyue Ping Ong of the Materials Virtual Lab started Pymatgen in 2011 and is still the project lead.

The pymatgen development team is the set of all contributors to the pymatgen project, including all subprojects.

Our Copyright Policy

Pymatgen uses a shared copyright model. Each contributor maintains copyright over their contributions to pymatgen. But, it is important to note that these contributions are typically only changes to the repositories. Thus, the pymatgen source code, in its entirety is not the copyright of any single person or institution. Instead, it is the collective copyright of the entire pymatgen Development Team. If individual contributors want to maintain a record of what changes/contributions they have specific copyright on, they should indicate their copyright in the commit message of the change, when they commit the change to one of the pymatgen repositories.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pymatgen-2023.5.31.tar.gz (9.7 MB view details)

Uploaded Source

Built Distributions

pymatgen-2023.5.31-cp311-cp311-win_amd64.whl (10.2 MB view details)

Uploaded CPython 3.11 Windows x86-64

pymatgen-2023.5.31-cp311-cp311-win32.whl (10.1 MB view details)

Uploaded CPython 3.11 Windows x86

pymatgen-2023.5.31-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pymatgen-2023.5.31-cp311-cp311-macosx_10_9_x86_64.whl (10.2 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pymatgen-2023.5.31-cp310-cp310-win_amd64.whl (10.2 MB view details)

Uploaded CPython 3.10 Windows x86-64

pymatgen-2023.5.31-cp310-cp310-win32.whl (10.1 MB view details)

Uploaded CPython 3.10 Windows x86

pymatgen-2023.5.31-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pymatgen-2023.5.31-cp310-cp310-macosx_10_9_x86_64.whl (10.2 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pymatgen-2023.5.31-cp39-cp39-win_amd64.whl (10.2 MB view details)

Uploaded CPython 3.9 Windows x86-64

pymatgen-2023.5.31-cp39-cp39-win32.whl (10.1 MB view details)

Uploaded CPython 3.9 Windows x86

pymatgen-2023.5.31-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pymatgen-2023.5.31-cp39-cp39-macosx_10_9_x86_64.whl (10.2 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pymatgen-2023.5.31-cp38-cp38-win_amd64.whl (10.2 MB view details)

Uploaded CPython 3.8 Windows x86-64

pymatgen-2023.5.31-cp38-cp38-win32.whl (10.1 MB view details)

Uploaded CPython 3.8 Windows x86

pymatgen-2023.5.31-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pymatgen-2023.5.31-cp38-cp38-macosx_10_9_x86_64.whl (10.2 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file pymatgen-2023.5.31.tar.gz.

File metadata

  • Download URL: pymatgen-2023.5.31.tar.gz
  • Upload date:
  • Size: 9.7 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.6

File hashes

Hashes for pymatgen-2023.5.31.tar.gz
Algorithm Hash digest
SHA256 a02538061a1795b9bab1de5236b7a8016f1fe2251814274970bcaf07f8ba40b1
MD5 9aa3e65b92a510f5f5c38d13a89b7ad9
BLAKE2b-256 01a27cc399c68fad759fe7166051f53e1f3b72b7917679e84a537c8676de9ba0

See more details on using hashes here.

File details

Details for the file pymatgen-2023.5.31-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pymatgen-2023.5.31-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 67c5a22c294607d6378db7dd9c87b403d51a032af8e071868d5e655cb9ec26fa
MD5 2cce480da543cb5eba8cb5032ae69669
BLAKE2b-256 bc168afcb4d86a8d9e4fb37b632d4df834315920a33ea192e2bd1aa902d64704

See more details on using hashes here.

File details

Details for the file pymatgen-2023.5.31-cp311-cp311-win32.whl.

File metadata

File hashes

Hashes for pymatgen-2023.5.31-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 c879b4aeeaa4e37d90f0598d8a038dcac8234c2a253961eaccdfe1cf36607aaf
MD5 e5379aeb1f4cb4bde5b316147b271909
BLAKE2b-256 68f3bbb9475d977472633a77df877a2ce7107822491d78f334a5c62dfdce1aec

See more details on using hashes here.

File details

Details for the file pymatgen-2023.5.31-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pymatgen-2023.5.31-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5d42145f1ed7238a6b73c1161243ce6d7b205d5a5903b2e0ea7eca0af740936e
MD5 f1b21b88ee8688586d3184a21e6217c4
BLAKE2b-256 ff8ffa62a310e6d59e9861ffdd4af6ccadc8efd29975b49a4cb93c48ca85ab53

See more details on using hashes here.

File details

Details for the file pymatgen-2023.5.31-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pymatgen-2023.5.31-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8c1dde743409adf2b21979d97d4edd2c02bb439716589709d29d84d8c4ce487e
MD5 b33c470b6b29065d7a07870fb3fbdb89
BLAKE2b-256 949c6b7cb425456c000fb4662f3e7f3d672e3e89bc68be82a82c879178f45226

See more details on using hashes here.

File details

Details for the file pymatgen-2023.5.31-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pymatgen-2023.5.31-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 876f8544edc8c9147467ed2df4c57af03060385ec85856fcc9445e59a5a432c5
MD5 091681be673f5aaa8cdc18dd82336a11
BLAKE2b-256 90c979ddb78b50be5a1b84b53676e5bf3c6a68d41b02b67adbc0113b8056eef7

See more details on using hashes here.

File details

Details for the file pymatgen-2023.5.31-cp310-cp310-win32.whl.

File metadata

File hashes

Hashes for pymatgen-2023.5.31-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 69c3ad191a316ead6ad9d08d06576619dc54a90c3a69beceed3c6c9bbffae606
MD5 b38ceab7db6b3b8c709667667dbbc060
BLAKE2b-256 465ee5185a758d52456c2e1e4bdd1f232febcc1291b28f0c2d5f01ec6f914be7

See more details on using hashes here.

File details

Details for the file pymatgen-2023.5.31-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pymatgen-2023.5.31-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 cc2a1715931afc0ff0707df112f95ccf53f3fb25087eb7f4ea5d57080712783c
MD5 6a12ebd11c57c8032fcf4f99f73c08e2
BLAKE2b-256 ec85bb5f0b84cfe08dfba03db9d4b6004e8fa27da29a3681b5c5245e437f85f9

See more details on using hashes here.

File details

Details for the file pymatgen-2023.5.31-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pymatgen-2023.5.31-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 bf957557e90198cfd7477dfb601db23c504ea1ed8b52dfa65a5f90f90805f7b4
MD5 4e0d06dc9d2b54abc5748e16c437a6a2
BLAKE2b-256 fddcef1c94cd72f2b907a4bfcb7814a0e007f0e2803e698a6b63996dd96354f7

See more details on using hashes here.

File details

Details for the file pymatgen-2023.5.31-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pymatgen-2023.5.31-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 8ab876dc21e27dbc411d429488ab27e1b6d0c6cc4833dbebf628ea495c5ed48c
MD5 97724f08d97c2548a642c25b651562c5
BLAKE2b-256 5231417ce78cc41a82f19de5c76072c61a391f324848a4daaecae23aae2f357e

See more details on using hashes here.

File details

Details for the file pymatgen-2023.5.31-cp39-cp39-win32.whl.

File metadata

  • Download URL: pymatgen-2023.5.31-cp39-cp39-win32.whl
  • Upload date:
  • Size: 10.1 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.6

File hashes

Hashes for pymatgen-2023.5.31-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 893693abea9d1b039475a197d6a80c9f673a12b6afb45d3fff63c07f663ad254
MD5 8aafec0611bf39ae137d9a552e4cf6a8
BLAKE2b-256 8a92b0c157b038316ac731f1ebe9066623afd4d77ad5ae64cac956ea0fd1fa68

See more details on using hashes here.

File details

Details for the file pymatgen-2023.5.31-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pymatgen-2023.5.31-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e88df8d323e57c5b1399109607212f40f5929f587bc30c70c1099438a0a79310
MD5 141b33ee6cbb3118a04362ae1efbfe11
BLAKE2b-256 cf7c7f38584930e8a0c696ebe155e4b89c60fff7d4dfc3d812474a9a11cffbb0

See more details on using hashes here.

File details

Details for the file pymatgen-2023.5.31-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pymatgen-2023.5.31-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7a09878666902b13369afa20c988c216e6178d6d0592aae9cfb91c36857d0ee2
MD5 5ead39f9b7a31c3d93da65baca84e1b0
BLAKE2b-256 d3b865389cd6b92b64dd3cace278ae0046a4cce4ee90d811fcad3997f2a56b8f

See more details on using hashes here.

File details

Details for the file pymatgen-2023.5.31-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pymatgen-2023.5.31-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 6920df542fdfff5544fbcc454926f60eba8d7398463f61af51fc26e1160bfdba
MD5 b893a16df7c018b29e66e5dc8f5ab878
BLAKE2b-256 3d4a8a284d8a0c74094dfc54bc2eb6d533187208c001ea60380a814bd31fe3fa

See more details on using hashes here.

File details

Details for the file pymatgen-2023.5.31-cp38-cp38-win32.whl.

File metadata

  • Download URL: pymatgen-2023.5.31-cp38-cp38-win32.whl
  • Upload date:
  • Size: 10.1 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.6

File hashes

Hashes for pymatgen-2023.5.31-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 3c53ed125d7484aae91c9d1e7bb06552090e284c7cfda3bae7e81dae5b857d5b
MD5 212a7d7710a65ed12bc888533d16a2de
BLAKE2b-256 884dabdf064580129b692dd22894194d9838efa0c10b9a39a93c79d515576bb0

See more details on using hashes here.

File details

Details for the file pymatgen-2023.5.31-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pymatgen-2023.5.31-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2e56065584996592377ba076929441e9a854834e2e89fadd505c1dffdc05cbe1
MD5 436409944e9d437d3df40a1e882e76b9
BLAKE2b-256 206b7d0af73f9abdd6bfd188e21a864965c2c02e4cdf256de2865182d8a3b276

See more details on using hashes here.

File details

Details for the file pymatgen-2023.5.31-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pymatgen-2023.5.31-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e7866c7aa4bed503c386a6b69bdbd72c03aa123d3edfd8f53aa1fdde12f30f96
MD5 58feb38675d29edec2180770316d9aec
BLAKE2b-256 ef59d74832b34a5d894c25dc65e7cd983cdaa6aabc01e5f086e71919d6fdacac

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page