Skip to main content

Python Materials Genomics is a robust materials analysis code that defines core object representations for structures and molecules with support for many electronic structure codes. It is currently the core analysis code powering the Materials Project (https://materialsproject.org).

Project description

Logo

CI Status Coveralls PyPI Downloads Conda Downloads Requires Python 3.8+

Pymatgen (Python Materials Genomics) is a robust, open-source Python library for materials analysis. These are some of the main features:

  1. Highly flexible classes for the representation of Element, Site, Molecule and Structure objects.
  2. Extensive input/output support, including support for VASP, ABINIT, CIF, Gaussian, XYZ, and many other file formats.
  3. Powerful analysis tools, including generation of phase diagrams, Pourbaix diagrams, diffusion analyses, reactions, etc.
  4. Electronic structure analyses, such as density of states and band structure.
  5. Integration with the Materials Project REST API.

Pymatgen is free to use. However, we also welcome your help to improve this library by making your contributions. These contributions can be in the form of additional tools or modules you develop, or feature requests and bug reports. The following are resources for pymatgen:

Why use pymatgen?

  1. It is (fairly) robust. Pymatgen is used by thousands of researchers and is the analysis code powering the Materials Project. The analysis it produces survives rigorous scrutiny every single day. Bugs tend to be found and corrected quickly. Pymatgen also uses Github Actions for continuous integration, which ensures that every new code passes a comprehensive suite of unit tests.
  2. It is well documented. A fairly comprehensive documentation has been written to help you get to grips with it quickly.
  3. It is open. You are free to use and contribute to pymatgen. It also means that pymatgen is continuously being improved. We will attribute any code you contribute to any publication you specify. Contributing to pymatgen means your research becomes more visible, which translates to greater impact.
  4. It is fast. Many of the core numerical methods in pymatgen have been optimized by vectorizing in numpy/scipy. This means that coordinate manipulations are extremely fast and are in fact comparable to codes written in other languages. Pymatgen also comes with a complete system for handling periodic boundary conditions.
  5. It will be around. Pymatgen is not a pet research project. It is used in the well-established Materials Project. It is also actively being developed and maintained by the Materials Virtual Lab, the ABINIT group and many other research groups.
  6. A growing ecosystem of developers and add-ons. Pymatgen has contributions from materials scientists all over the world. We also now have an architecture to support add-ons that expand pymatgen's functionality even further. Check out the contributing page and add-ons page for details and examples.

Installation

The version at the Python Package Index (PyPI) is always the latest stable release that is relatively bug-free and can be installed via pip:

pip install pymatgen

If you'd like to use the latest unreleased changes on the main branch, you can install directly from GitHub:

pip install -U git+https://github.com/materialsproject/pymatgen

The minimum Python version is 3.8. Some extra functionality (e.g., generation of POTCARs) does require additional setup (see the pymatgen page).

Change Log

Please check GitHub releases and commit history for the latest changes. A legacy changelog is still up at https://pymatgen.org/change_log.

Using pymatgen

Please refer to the official pymatgen page for tutorials and examples.

How to cite pymatgen

If you use pymatgen in your research, please consider citing the following work:

Shyue Ping Ong, William Davidson Richards, Anubhav Jain, Geoffroy Hautier, Michael Kocher, Shreyas Cholia, Dan Gunter, Vincent Chevrier, Kristin A. Persson, Gerbrand Ceder. Python Materials Genomics (pymatgen): A Robust, Open-Source Python Library for Materials Analysis. Computational Materials Science, 2013, 68, 314-319. doi:10.1016/j.commatsci.2012.10.028

In addition, some of pymatgen's functionality is based on scientific advances/principles developed by the computational materials scientists in our team. Please refer to pymatgen's documentation on how to cite them.

License

Pymatgen is released under the MIT License. The terms of the license are as follows:

The MIT License (MIT) Copyright (c) 2011-2012 MIT & LBNL

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

About the Pymatgen Development Team

Shyue Ping Ong of the Materials Virtual Lab started Pymatgen in 2011 and is still the project lead.

The pymatgen development team is the set of all contributors to the pymatgen project, including all subprojects.

Our Copyright Policy

Pymatgen uses a shared copyright model. Each contributor maintains copyright over their contributions to pymatgen. But, it is important to note that these contributions are typically only changes to the repositories. Thus, the pymatgen source code, in its entirety is not the copyright of any single person or institution. Instead, it is the collective copyright of the entire pymatgen Development Team. If individual contributors want to maintain a record of what changes/contributions they have specific copyright on, they should indicate their copyright in the commit message of the change, when they commit the change to one of the pymatgen repositories.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pymatgen-2023.5.8.tar.gz (9.7 MB view details)

Uploaded Source

Built Distributions

pymatgen-2023.5.8-cp311-cp311-win_amd64.whl (10.2 MB view details)

Uploaded CPython 3.11 Windows x86-64

pymatgen-2023.5.8-cp311-cp311-win32.whl (10.2 MB view details)

Uploaded CPython 3.11 Windows x86

pymatgen-2023.5.8-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.5 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pymatgen-2023.5.8-cp311-cp311-macosx_10_9_x86_64.whl (10.2 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pymatgen-2023.5.8-cp310-cp310-win_amd64.whl (10.2 MB view details)

Uploaded CPython 3.10 Windows x86-64

pymatgen-2023.5.8-cp310-cp310-win32.whl (10.2 MB view details)

Uploaded CPython 3.10 Windows x86

pymatgen-2023.5.8-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pymatgen-2023.5.8-cp310-cp310-macosx_10_9_x86_64.whl (10.2 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pymatgen-2023.5.8-cp39-cp39-win_amd64.whl (10.2 MB view details)

Uploaded CPython 3.9 Windows x86-64

pymatgen-2023.5.8-cp39-cp39-win32.whl (10.2 MB view details)

Uploaded CPython 3.9 Windows x86

pymatgen-2023.5.8-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pymatgen-2023.5.8-cp39-cp39-macosx_10_9_x86_64.whl (10.2 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pymatgen-2023.5.8-cp38-cp38-win_amd64.whl (10.2 MB view details)

Uploaded CPython 3.8 Windows x86-64

pymatgen-2023.5.8-cp38-cp38-win32.whl (10.2 MB view details)

Uploaded CPython 3.8 Windows x86

pymatgen-2023.5.8-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pymatgen-2023.5.8-cp38-cp38-macosx_10_9_x86_64.whl (10.2 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file pymatgen-2023.5.8.tar.gz.

File metadata

  • Download URL: pymatgen-2023.5.8.tar.gz
  • Upload date:
  • Size: 9.7 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.6

File hashes

Hashes for pymatgen-2023.5.8.tar.gz
Algorithm Hash digest
SHA256 f3aea845d12f98c2532edbf9e3ad0ae96771fb74922b178eae6d9378faa3a7be
MD5 d3b637de4377cf262880044ead8a5f85
BLAKE2b-256 223d40d94cda0a84423a05c352460cca820391428583a5c6ab6df789dd624926

See more details on using hashes here.

File details

Details for the file pymatgen-2023.5.8-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pymatgen-2023.5.8-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 59cc21e9a042166904aca322169e0466f2b8d5817ed2cfe14e82fb4ef3af44e6
MD5 cf47b90a7833ee124c30168901469c17
BLAKE2b-256 7c526919c23261e2dd215fed62bbcde7bdb557dd52340380e1bf61553342d0a6

See more details on using hashes here.

File details

Details for the file pymatgen-2023.5.8-cp311-cp311-win32.whl.

File metadata

  • Download URL: pymatgen-2023.5.8-cp311-cp311-win32.whl
  • Upload date:
  • Size: 10.2 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.6

File hashes

Hashes for pymatgen-2023.5.8-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 2122680f95495a3d3bb004c6ad6f349915fa9e076b71e8fe1d677be0827bfba5
MD5 c570409c881b2281521ed37d10e1b042
BLAKE2b-256 b21eace8936d83816fa62bc06aa67413f317cc581a9ad3efb2fd666d46f1ea9c

See more details on using hashes here.

File details

Details for the file pymatgen-2023.5.8-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pymatgen-2023.5.8-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c3123051dd4ffdf1f5d45b3a3759f1d6226f65afe0d1cce686dc546a3b640dc2
MD5 5053f228b8f32aa5691378e30a694110
BLAKE2b-256 a48085353127756edeea154c05e7c9fdf71f145a387956d3ba4a6b347ad84447

See more details on using hashes here.

File details

Details for the file pymatgen-2023.5.8-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pymatgen-2023.5.8-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9528ab261a1f60333aba7f04ee8c62c0b36cb61bcf4bacdb52b405c2c0d7521e
MD5 1e7ac9974816928ad69d9a6e58fc596c
BLAKE2b-256 6ca809cd3da273cf8d4322c3d59bef89bdc62b5444395792943d51a28e67ca94

See more details on using hashes here.

File details

Details for the file pymatgen-2023.5.8-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pymatgen-2023.5.8-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 38e3bfcdb9bbb021775e000fbc442adab0a506c61801d00b7ae692b4ba48c62b
MD5 6c7ac997ff197b7b6aa4701e783b1ebb
BLAKE2b-256 a1a40f18467c4ca85a80136ad3513ced76950e0c981e5867eb145fd938ff3127

See more details on using hashes here.

File details

Details for the file pymatgen-2023.5.8-cp310-cp310-win32.whl.

File metadata

  • Download URL: pymatgen-2023.5.8-cp310-cp310-win32.whl
  • Upload date:
  • Size: 10.2 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.6

File hashes

Hashes for pymatgen-2023.5.8-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 a113beac307cee538804c2b2d31d5137ccd9a92c6d20af47413cbcb41229c0e9
MD5 775a0c6833f9980c44562b41c05bc34a
BLAKE2b-256 10ccf8285207d15b644b7052506aa0167c7408ec498cc75e5f22eccdc01cd9c3

See more details on using hashes here.

File details

Details for the file pymatgen-2023.5.8-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pymatgen-2023.5.8-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2346baf4ea8ace4d0a395b9574a39f34f656572d726f7c902680960e595ff103
MD5 00821948f949cb62040d6d5f89583c3b
BLAKE2b-256 6635a91cefa717ac34c725c3c1576ed54aca95a562ed114894602ff04b74c824

See more details on using hashes here.

File details

Details for the file pymatgen-2023.5.8-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pymatgen-2023.5.8-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4b623650dc11da3440f151698c58243feb9ed600c3b3c82d2bd5c92ff9cb204c
MD5 f3ea2b727ef5339d6cb20d699be2c1c2
BLAKE2b-256 69e4de56bff6bc26e12cee064b16741c45722281926567371b1cca362eea8347

See more details on using hashes here.

File details

Details for the file pymatgen-2023.5.8-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pymatgen-2023.5.8-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 61fd44da23a8c33dcceed5f8571f9ab61f36458e2b4295d4e33bb92d22500efa
MD5 e24a14e999a78a56365123de6bb81b7e
BLAKE2b-256 21f16781d4c850d396f0fb87c81dd35d97e33f0bd4f33324a98e25b724d86232

See more details on using hashes here.

File details

Details for the file pymatgen-2023.5.8-cp39-cp39-win32.whl.

File metadata

  • Download URL: pymatgen-2023.5.8-cp39-cp39-win32.whl
  • Upload date:
  • Size: 10.2 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.6

File hashes

Hashes for pymatgen-2023.5.8-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 d5cd29685aba82242ceb0d743d407ccb47d82d7e0bfa87d08730e19b32e43ca8
MD5 1b4f6f1e5968a34229a2f1033d306c02
BLAKE2b-256 b43e2c200041fca30208f507a06ec89b9fb7b740c59b0f376a72abbac036d77f

See more details on using hashes here.

File details

Details for the file pymatgen-2023.5.8-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pymatgen-2023.5.8-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1aee4b189f7bf4b24127c3f4b1447d690e5eb214cbc94e1aa90e9c5f99cd4150
MD5 7ef217896e2c8b633980fca5e17a9b40
BLAKE2b-256 4598983ddf8c39307f86d16acb42372cb84622010c27957199d960475ca85411

See more details on using hashes here.

File details

Details for the file pymatgen-2023.5.8-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pymatgen-2023.5.8-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f7bf88ecb3ec7fb1429683c4809cd458ef490f1ac5cf054f6e58f4e489eb1351
MD5 aad154ac0639e6e5c2fb13841dd1c7d9
BLAKE2b-256 e67dc7fb7e97659594bd13320735cf09af483a52c9a4447a46e0735725a98bec

See more details on using hashes here.

File details

Details for the file pymatgen-2023.5.8-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pymatgen-2023.5.8-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 ea524d9360db5035d111a35b3bce18be12c43ae28f768a9bd78ed271a855d40e
MD5 ef328b574d43f88fbd757d95d60ab34c
BLAKE2b-256 cf5890d7ec4c1b7368c6cc580f98131ebd905be66a6e3cd8244d75a91661e832

See more details on using hashes here.

File details

Details for the file pymatgen-2023.5.8-cp38-cp38-win32.whl.

File metadata

  • Download URL: pymatgen-2023.5.8-cp38-cp38-win32.whl
  • Upload date:
  • Size: 10.2 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.6

File hashes

Hashes for pymatgen-2023.5.8-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 7adeb2292a814e6d2f1f82089c30c53ead7d7eeaccec902d20b8602832bfd2c9
MD5 c00ddbd8519e34b6cd81fb6207468f8d
BLAKE2b-256 b825ca7100280885449c37d023d39d2fbae0cc028f92b670aaad04bae5ee97bd

See more details on using hashes here.

File details

Details for the file pymatgen-2023.5.8-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pymatgen-2023.5.8-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 cbfafdf773a9ff2e608928532a51ad4575fb50ba829820b425f9e2d608bdc45d
MD5 eda76bb9914d5df55495e03ab9dca5f4
BLAKE2b-256 e14517bf5ed05a2b5c67627ffe1868e5705347e47d674ed90e2e50b62d655ed9

See more details on using hashes here.

File details

Details for the file pymatgen-2023.5.8-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pymatgen-2023.5.8-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6c33e91fa3596a8b3240328d507d3a1bdfef91913da3326b9150307936f0cb0f
MD5 d033f5ff3af6a25b0f2dccb807936467
BLAKE2b-256 ada41f19796bb46812469f3c29c0bd0d0a7f8f73f186548a6eea990ed7c38a73

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page