Skip to main content

Python Materials Genomics is a robust materials analysis code that defines core object representations for structures and molecules with support for many electronic structure codes. It is currently the core analysis code powering the Materials Project (https://materialsproject.org).

Project description

Logo

CI Status Coveralls PyPI Downloads Conda Downloads Requires Python 3.8+

Pymatgen (Python Materials Genomics) is a robust, open-source Python library for materials analysis. These are some of the main features:

  1. Highly flexible classes for the representation of Element, Site, Molecule and Structure objects.
  2. Extensive input/output support, including support for VASP, ABINIT, CIF, Gaussian, XYZ, and many other file formats.
  3. Powerful analysis tools, including generation of phase diagrams, Pourbaix diagrams, diffusion analyses, reactions, etc.
  4. Electronic structure analyses, such as density of states and band structure.
  5. Integration with the Materials Project REST API.

Pymatgen is free to use. However, we also welcome your help to improve this library by making your contributions. These contributions can be in the form of additional tools or modules you develop, or feature requests and bug reports. The following are resources for pymatgen:

Why use pymatgen?

  1. It is (fairly) robust. Pymatgen is used by thousands of researchers and is the analysis code powering the Materials Project. The analysis it produces survives rigorous scrutiny every single day. Bugs tend to be found and corrected quickly. Pymatgen also uses Github Actions for continuous integration, which ensures that every new code passes a comprehensive suite of unit tests.
  2. It is well documented. A fairly comprehensive documentation has been written to help you get to grips with it quickly.
  3. It is open. You are free to use and contribute to pymatgen. It also means that pymatgen is continuously being improved. We will attribute any code you contribute to any publication you specify. Contributing to pymatgen means your research becomes more visible, which translates to greater impact.
  4. It is fast. Many of the core numerical methods in pymatgen have been optimized by vectorizing in numpy/scipy. This means that coordinate manipulations are extremely fast and are in fact comparable to codes written in other languages. Pymatgen also comes with a complete system for handling periodic boundary conditions.
  5. It will be around. Pymatgen is not a pet research project. It is used in the well-established Materials Project. It is also actively being developed and maintained by the Materials Virtual Lab, the ABINIT group and many other research groups.
  6. A growing ecosystem of developers and add-ons. Pymatgen has contributions from materials scientists all over the world. We also now have an architecture to support add-ons that expand pymatgen's functionality even further. Check out the contributing page and add-ons page for details and examples.

Installation

The version at the Python Package Index (PyPI) is always the latest stable release that is relatively bug-free and can be installed via pip:

pip install pymatgen

If you'd like to use the latest unreleased changes on the main branch, you can install directly from GitHub:

pip install -U git+https://github.com/materialsproject/pymatgen

The minimum Python version is 3.8. Some extra functionality (e.g., generation of POTCARs) does require additional setup (see the pymatgen page).

Change Log

Please check GitHub releases and commit history for the latest changes. A legacy changelog is still up at https://pymatgen.org/change_log.

Using pymatgen

Please refer to the official pymatgen page for tutorials and examples.

How to cite pymatgen

If you use pymatgen in your research, please consider citing the following work:

Shyue Ping Ong, William Davidson Richards, Anubhav Jain, Geoffroy Hautier, Michael Kocher, Shreyas Cholia, Dan Gunter, Vincent Chevrier, Kristin A. Persson, Gerbrand Ceder. Python Materials Genomics (pymatgen): A Robust, Open-Source Python Library for Materials Analysis. Computational Materials Science, 2013, 68, 314-319. doi:10.1016/j.commatsci.2012.10.028

In addition, some of pymatgen's functionality is based on scientific advances/principles developed by the computational materials scientists in our team. Please refer to pymatgen's documentation on how to cite them.

License

Pymatgen is released under the MIT License. The terms of the license are as follows:

The MIT License (MIT) Copyright (c) 2011-2012 MIT & LBNL

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

About the Pymatgen Development Team

Shyue Ping Ong of the Materials Virtual Lab started Pymatgen in 2011 and is still the project lead.

The pymatgen development team is the set of all contributors to the pymatgen project, including all subprojects.

Our Copyright Policy

Pymatgen uses a shared copyright model. Each contributor maintains copyright over their contributions to pymatgen. But, it is important to note that these contributions are typically only changes to the repositories. Thus, the pymatgen source code, in its entirety is not the copyright of any single person or institution. Instead, it is the collective copyright of the entire pymatgen Development Team. If individual contributors want to maintain a record of what changes/contributions they have specific copyright on, they should indicate their copyright in the commit message of the change, when they commit the change to one of the pymatgen repositories.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pymatgen-2023.6.23.tar.gz (9.7 MB view details)

Uploaded Source

Built Distributions

pymatgen-2023.6.23-cp311-cp311-win_amd64.whl (10.2 MB view details)

Uploaded CPython 3.11 Windows x86-64

pymatgen-2023.6.23-cp311-cp311-win32.whl (10.2 MB view details)

Uploaded CPython 3.11 Windows x86

pymatgen-2023.6.23-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pymatgen-2023.6.23-cp311-cp311-macosx_10_9_x86_64.whl (10.2 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pymatgen-2023.6.23-cp310-cp310-win_amd64.whl (10.2 MB view details)

Uploaded CPython 3.10 Windows x86-64

pymatgen-2023.6.23-cp310-cp310-win32.whl (10.2 MB view details)

Uploaded CPython 3.10 Windows x86

pymatgen-2023.6.23-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pymatgen-2023.6.23-cp310-cp310-macosx_10_9_x86_64.whl (10.2 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pymatgen-2023.6.23-cp39-cp39-win_amd64.whl (10.2 MB view details)

Uploaded CPython 3.9 Windows x86-64

pymatgen-2023.6.23-cp39-cp39-win32.whl (10.2 MB view details)

Uploaded CPython 3.9 Windows x86

pymatgen-2023.6.23-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pymatgen-2023.6.23-cp39-cp39-macosx_10_9_x86_64.whl (10.2 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pymatgen-2023.6.23-cp38-cp38-win_amd64.whl (10.2 MB view details)

Uploaded CPython 3.8 Windows x86-64

pymatgen-2023.6.23-cp38-cp38-win32.whl (10.2 MB view details)

Uploaded CPython 3.8 Windows x86

pymatgen-2023.6.23-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pymatgen-2023.6.23-cp38-cp38-macosx_10_9_x86_64.whl (10.2 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file pymatgen-2023.6.23.tar.gz.

File metadata

  • Download URL: pymatgen-2023.6.23.tar.gz
  • Upload date:
  • Size: 9.7 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.6

File hashes

Hashes for pymatgen-2023.6.23.tar.gz
Algorithm Hash digest
SHA256 9dd2096d5a1d3642d56f2c8cb0ed90676cf4e5861db608a5a38964683869a5d9
MD5 ce6e151923d7a61cb4dfef5e4c9cc054
BLAKE2b-256 c38738a611551f03bdcb204544d6469c4eb1964776c164cab0abd494cdf92191

See more details on using hashes here.

File details

Details for the file pymatgen-2023.6.23-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pymatgen-2023.6.23-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 36f910a70c26e7e0e19f55162990c7d49ea5a855a3ed63271e1ad95820b2be4c
MD5 d883032a99d8c1308051f0fda55ed0e8
BLAKE2b-256 b53caea7504750530a753c4d9124f3068446950261aab9f7468c1d8ebf9de612

See more details on using hashes here.

File details

Details for the file pymatgen-2023.6.23-cp311-cp311-win32.whl.

File metadata

File hashes

Hashes for pymatgen-2023.6.23-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 fbd0fe8e4d0e185c22488b0b50d68736a6534fd18a8d5e1cb0631bbb31e4cd54
MD5 d54c6e847e53dfc346f8c8bd22a664f3
BLAKE2b-256 2c91e6f55bce90ed4a0a00d5242d8e1b193cf45e1ffb5f932b7f5f58142e79d0

See more details on using hashes here.

File details

Details for the file pymatgen-2023.6.23-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pymatgen-2023.6.23-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5a2f151ec26013c0c506dc9e15b85fd3e35de46b0e6bb5a464cb13ddd09ce2ce
MD5 e5c17ab25d4b1d5a3fa372b50eef6533
BLAKE2b-256 5fc38c1b74d538da05bcc27cbf6d5e8ae8c15165e451c6890aea5baf5669607a

See more details on using hashes here.

File details

Details for the file pymatgen-2023.6.23-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pymatgen-2023.6.23-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9b62da00fed414cee6da5c5448d5bff98016b9747298f40b5869bf220c921616
MD5 046d6977fb9e278ab472ff33d53ec206
BLAKE2b-256 c0116ed447c70df2b4ca43a372f54fe42c284c92be47758268b6a79e1b5fa90c

See more details on using hashes here.

File details

Details for the file pymatgen-2023.6.23-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pymatgen-2023.6.23-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 6090272680a2d8e05cb12c22521949c3837df3313b99a40602a6ef359067f945
MD5 e327592c9a35a51d3152158b565e3aa9
BLAKE2b-256 af5f5d447a1884b5167fc5d136eee57c6115fa59d8c49ba5daaad3017ce382c1

See more details on using hashes here.

File details

Details for the file pymatgen-2023.6.23-cp310-cp310-win32.whl.

File metadata

File hashes

Hashes for pymatgen-2023.6.23-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 78e407da0a74df3d23085bafb93f5c6ca6fba7b204ada8e16311bb314bbb6d8d
MD5 07ed4eb211c5f9f2354f1038e1288dc8
BLAKE2b-256 2b0c78f9c28cf4d0bd1bb918476131011715eeb28704fa3914ccad2619b5d4ce

See more details on using hashes here.

File details

Details for the file pymatgen-2023.6.23-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pymatgen-2023.6.23-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 414fa64135d2c9b2f64ebd9808331010923e6bd2c79ff42e468e03785e4fe4de
MD5 2d4664a501f1348342fb6302304def44
BLAKE2b-256 552142751936a366644500297002cfd59cca900334564717f54acaeec66b3039

See more details on using hashes here.

File details

Details for the file pymatgen-2023.6.23-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pymatgen-2023.6.23-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3bc5ba62f8d3a729c1c20885da81081ba4d5f19f79edd24baf6ef6634fda28e7
MD5 f837d9d11931ad0429911eae6fafa662
BLAKE2b-256 c980df3b2b43f3bd00f69e45e92124ad386164e0ee1065c12fd0f1ca6e2b5fb8

See more details on using hashes here.

File details

Details for the file pymatgen-2023.6.23-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pymatgen-2023.6.23-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 d49ca719ed05c6201b2322b0655d233e7bdb23cfb9f97d624f23fbffc8f53f38
MD5 2eb14029efa7b918a848749852f3ed9c
BLAKE2b-256 88aea052aea391b37921bd9b2dccb2c693b2d241180ebe8fc3340f500731169c

See more details on using hashes here.

File details

Details for the file pymatgen-2023.6.23-cp39-cp39-win32.whl.

File metadata

  • Download URL: pymatgen-2023.6.23-cp39-cp39-win32.whl
  • Upload date:
  • Size: 10.2 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.6

File hashes

Hashes for pymatgen-2023.6.23-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 233ddf3d26b9a306381ff4b2c496aade4201c03924324bcb1a4daf428e11e406
MD5 71339c8dc1b9b6fb143605660408aa27
BLAKE2b-256 1e7f918c365044ad401872620314b6ad3edf9b395595932588f5b2360c163875

See more details on using hashes here.

File details

Details for the file pymatgen-2023.6.23-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pymatgen-2023.6.23-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 61e60ad0502315994c0277ef1ccfab164c22949f2d0485014fc51284299f5b58
MD5 67d2f9ea389119e50aff32455e0f6d9f
BLAKE2b-256 8e4c506110c3d10c99c3f6d95b23a3f30feb257ae55b41aaa3aa326c7d1d1c1b

See more details on using hashes here.

File details

Details for the file pymatgen-2023.6.23-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pymatgen-2023.6.23-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f2c7461d1020bd82eccba7a8f723a6a3f937bc918b7493e7f8b91a22845f68b4
MD5 918662e789a17542ca5de8c9ffd455f2
BLAKE2b-256 06647440aa9d30f7f139a4642be5913ef18f273a0d63b64b9336c00fbd011648

See more details on using hashes here.

File details

Details for the file pymatgen-2023.6.23-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pymatgen-2023.6.23-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 ec94907ca5c2826eea25d0ac4063ab52cbfe9038b66fccc8042151357b56d95d
MD5 5d6d64fcf4fcce20b9d8b71b6711726b
BLAKE2b-256 8e2cef0707691926bdfa621d3e6757f52b4e430abcd8342eb105837f486e55c6

See more details on using hashes here.

File details

Details for the file pymatgen-2023.6.23-cp38-cp38-win32.whl.

File metadata

  • Download URL: pymatgen-2023.6.23-cp38-cp38-win32.whl
  • Upload date:
  • Size: 10.2 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.6

File hashes

Hashes for pymatgen-2023.6.23-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 c76497a9219e5e02a35102ed790dfc451bd27deaecb20f07979b327fe29d40d1
MD5 a65dca599007e83b3f6ceadca1b937ee
BLAKE2b-256 46fa68949350187d931dc747c62d79c36634fbc5d6c8dba2c296d66f6922ff63

See more details on using hashes here.

File details

Details for the file pymatgen-2023.6.23-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pymatgen-2023.6.23-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2b519553ffe182e48c173f7aef076995e204646476b9c4bc6da47e287c32a9c7
MD5 b4f862dffe40bdc295fae43c19b6de9a
BLAKE2b-256 1a1bc3ecf15e6e88eb1ba8b72d297444e2797e1682ab48fbc789bed1bb46b9ca

See more details on using hashes here.

File details

Details for the file pymatgen-2023.6.23-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pymatgen-2023.6.23-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 923bc30afdc95a5e3e6e893cbd6bb76f9c9c7efdc8007a0a2f8bca1e322b52ef
MD5 2bfa4d6a4d277dcc738aafdc618e3155
BLAKE2b-256 02d4c79a13f3f922772e07583a1f0fd34fd58f31374d35e872938009cd969920

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page