Skip to main content

Python Materials Genomics is a robust materials analysis code that defines core object representations for structures and molecules with support for many electronic structure codes. It is currently the core analysis code powering the Materials Project (https://materialsproject.org).

Project description

Logo

CI Status Coveralls PyPI Downloads Conda Downloads Requires Python 3.8+ arXiv

Pymatgen (Python Materials Genomics) is a robust, open-source Python library for materials analysis. These are some of the main features:

  1. Highly flexible classes for the representation of Element, Site, Molecule and Structure objects.
  2. Extensive input/output support, including support for VASP, ABINIT, CIF, Gaussian, XYZ, and many other file formats.
  3. Powerful analysis tools, including generation of phase diagrams, Pourbaix diagrams, diffusion analyses, reactions, etc.
  4. Electronic structure analyses, such as density of states and band structure.
  5. Integration with the Materials Project REST API.

Pymatgen is free to use. However, we also welcome your help to improve this library by making your contributions. These contributions can be in the form of additional tools or modules you develop, or feature requests and bug reports. The following are resources for pymatgen:

Why use pymatgen?

  1. It is (fairly) robust. Pymatgen is used by thousands of researchers and is the analysis code powering the Materials Project. The analysis it produces survives rigorous scrutiny every single day. Bugs tend to be found and corrected quickly. Pymatgen also uses Github Actions for continuous integration, which ensures that every new code passes a comprehensive suite of unit tests.
  2. It is well documented. A fairly comprehensive documentation has been written to help you get to grips with it quickly.
  3. It is open. You are free to use and contribute to pymatgen. It also means that pymatgen is continuously being improved. We will attribute any code you contribute to any publication you specify. Contributing to pymatgen means your research becomes more visible, which translates to greater impact.
  4. It is fast. Many of the core numerical methods in pymatgen have been optimized by vectorizing in numpy/scipy. This means that coordinate manipulations are fast. Pymatgen also comes with a complete system for handling periodic boundary conditions.
  5. It will be around. Pymatgen is not a pet research project. It is used in the well-established Materials Project. It is also actively being developed and maintained by the Materials Virtual Lab, the ABINIT group and many other research groups.
  6. A growing ecosystem of developers and add-ons. Pymatgen has contributions from materials scientists all over the world. We also now have an architecture to support add-ons that expand pymatgen's functionality even further. Check out the contributing page and add-ons page for details and examples.

Installation

The version at the Python Package Index PyPI is always the latest stable release that is relatively bug-free and can be installed via pip:

pip install pymatgen

If you'd like to use the latest unreleased changes on the main branch, you can install directly from GitHub:

pip install -U git+https://github.com/materialsproject/pymatgen

The minimum Python version is 3.8. Some extra functionality (e.g., generation of POTCARs) does require additional setup (see the pymatgen docs).

Change Log

Please check GitHub releases and commit history for the latest changes. A legacy changelog is still up at https://pymatgen.org/change_log.

Using pymatgen

Please refer to the official pymatgen docs for tutorials and examples.

How to cite pymatgen

If you use pymatgen in your research, please consider citing the following work:

Shyue Ping Ong, William Davidson Richards, Anubhav Jain, Geoffroy Hautier, Michael Kocher, Shreyas Cholia, Dan Gunter, Vincent Chevrier, Kristin A. Persson, Gerbrand Ceder. Python Materials Genomics (pymatgen): A Robust, Open-Source Python Library for Materials Analysis. Computational Materials Science, 2013, 68, 314-319. doi:10.1016/j.commatsci.2012.10.028

In addition, some of pymatgen's functionality is based on scientific advances/principles developed by the computational materials scientists in our team. Please refer to the pymatgen docs on how to cite them.

License

Pymatgen is released under the MIT License. The terms of the license are as follows:

The MIT License (MIT) Copyright (c) 2011-2012 MIT & LBNL

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

About the Pymatgen Development Team

Shyue Ping Ong of the Materials Virtual Lab started Pymatgen in 2011 and is still the project lead.

The pymatgen development team is the set of all contributors to the pymatgen project, including all subprojects.

Our Copyright Policy

Pymatgen uses a shared copyright model. Each contributor maintains copyright over their contributions to pymatgen. But, it is important to note that these contributions are typically only changes to the repositories. Thus, the pymatgen source code, in its entirety is not the copyright of any single person or institution. Instead, it is the collective copyright of the entire pymatgen Development Team. If individual contributors want to maintain a record of what changes/contributions they have specific copyright on, they should indicate their copyright in the commit message of the change, when they commit the change to one of the pymatgen repositories.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pymatgen-2023.7.17.tar.gz (9.7 MB view details)

Uploaded Source

Built Distributions

pymatgen-2023.7.17-cp311-cp311-win_amd64.whl (10.2 MB view details)

Uploaded CPython 3.11 Windows x86-64

pymatgen-2023.7.17-cp311-cp311-win32.whl (10.2 MB view details)

Uploaded CPython 3.11 Windows x86

pymatgen-2023.7.17-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.7 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pymatgen-2023.7.17-cp311-cp311-macosx_10_9_x86_64.whl (10.3 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pymatgen-2023.7.17-cp310-cp310-win_amd64.whl (10.2 MB view details)

Uploaded CPython 3.10 Windows x86-64

pymatgen-2023.7.17-cp310-cp310-win32.whl (10.2 MB view details)

Uploaded CPython 3.10 Windows x86

pymatgen-2023.7.17-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pymatgen-2023.7.17-cp310-cp310-macosx_10_9_x86_64.whl (10.3 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pymatgen-2023.7.17-cp39-cp39-win_amd64.whl (10.2 MB view details)

Uploaded CPython 3.9 Windows x86-64

pymatgen-2023.7.17-cp39-cp39-win32.whl (10.2 MB view details)

Uploaded CPython 3.9 Windows x86

pymatgen-2023.7.17-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pymatgen-2023.7.17-cp39-cp39-macosx_11_0_arm64.whl (10.2 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pymatgen-2023.7.17-cp39-cp39-macosx_10_9_x86_64.whl (10.3 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pymatgen-2023.7.17-cp38-cp38-win_amd64.whl (10.2 MB view details)

Uploaded CPython 3.8 Windows x86-64

pymatgen-2023.7.17-cp38-cp38-win32.whl (10.2 MB view details)

Uploaded CPython 3.8 Windows x86

pymatgen-2023.7.17-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pymatgen-2023.7.17-cp38-cp38-macosx_10_9_x86_64.whl (10.3 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file pymatgen-2023.7.17.tar.gz.

File metadata

  • Download URL: pymatgen-2023.7.17.tar.gz
  • Upload date:
  • Size: 9.7 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.17

File hashes

Hashes for pymatgen-2023.7.17.tar.gz
Algorithm Hash digest
SHA256 86db7df915c7dd0c3bc0f1e4470ae2d55b8feca9ef9446e74063eac8fca200d1
MD5 15805170979a2dcf6f6d2f715f448f1a
BLAKE2b-256 1629645fcbefad511102aaba6a0e869b8268b8307ebabc6c12213f9a7a6897f9

See more details on using hashes here.

File details

Details for the file pymatgen-2023.7.17-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pymatgen-2023.7.17-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 f73ef9cb57c8e0e839573c500d77e22120a5d752e12ade08e0fc80f8263f0c0b
MD5 99422c5f99b35a39785220dc30fd7bc0
BLAKE2b-256 b24c973a8507ff93f7f859a99286969e917f8a0f19c9f8592d2e6fffa03ecf9b

See more details on using hashes here.

File details

Details for the file pymatgen-2023.7.17-cp311-cp311-win32.whl.

File metadata

File hashes

Hashes for pymatgen-2023.7.17-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 bc094dfec378bcb0d82e786ea53203501bfacc3c76fe48d273718290846a24de
MD5 be2bd242bc2f9d3e22dc8199e3aa01d0
BLAKE2b-256 72310c594f2ce4488b60869f8c7f1ff8219aaf9714bc15a8b5a396e5866d8993

See more details on using hashes here.

File details

Details for the file pymatgen-2023.7.17-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pymatgen-2023.7.17-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 35432bd027886cf68d7bbabd40f3eefbdc163b306c251224bb6aa7769f25f1a4
MD5 bbafe7505190b3a2ebc351dc9e6666e2
BLAKE2b-256 f4dcf17a930c245cbb93ee550177f439f59e4310398dce55a811c7732695f6bf

See more details on using hashes here.

File details

Details for the file pymatgen-2023.7.17-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pymatgen-2023.7.17-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 aa862a8c17ef5418ee0305c228a3ff173cdf383dc0b0aa72f67d1faeae311a98
MD5 15b41ae50b199e1c91cbc934314ebf6f
BLAKE2b-256 b270893c8c69416a4d0e68f0e69b61fd23a9ffceacc9c0b167f58db38aaeb572

See more details on using hashes here.

File details

Details for the file pymatgen-2023.7.17-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pymatgen-2023.7.17-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 d9e75ad8bdde02b76bc3448ec05e48c739e14a55b8f270df4a9c21d1a24a53a8
MD5 f4502df6672bcfd9780f511cfb0e7a8b
BLAKE2b-256 f0dc64137e39ee4258b03f161dcade328b004c0ccbcb5134ce31dda19ba2f4f0

See more details on using hashes here.

File details

Details for the file pymatgen-2023.7.17-cp310-cp310-win32.whl.

File metadata

File hashes

Hashes for pymatgen-2023.7.17-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 cf68024f2f19c8d6d929e0f2585fb3f5e3b416ce1a702e49d93af2f1fb52e312
MD5 efddf0f52a87dabf226d8c91893889ba
BLAKE2b-256 af106ddc5027ef719b0ba3b3814e4c8ceef568d9baabd873aaaba79193739fe9

See more details on using hashes here.

File details

Details for the file pymatgen-2023.7.17-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pymatgen-2023.7.17-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2a2ecb412e0e6765d7cb63b168d6c61f6a833444e36da1eb4e162d2f948c63dd
MD5 7633d8b9c63cdc8c1b6d2a5f94a24179
BLAKE2b-256 9b637e574dd7f67cc62be194c47f8396b154b469a65f8f398fcd93a7c2ae06e3

See more details on using hashes here.

File details

Details for the file pymatgen-2023.7.17-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pymatgen-2023.7.17-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f6871d4506589c510403a72e4be2e6dc2f6ff130bf5175625ca3b6d53cd08e56
MD5 45bff223b8f6dd5d6429b65b1b646591
BLAKE2b-256 af41608bbad381464d0b84b0874819975fe4fe61cc5b800b223ab9b6feeb82a7

See more details on using hashes here.

File details

Details for the file pymatgen-2023.7.17-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pymatgen-2023.7.17-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 f722a19382538fd2a46e7e290ee858aa6cbd4a8e4586c7f2dd9561c40b8ccc72
MD5 4ed289c1d2a1c9dede706135e77cb45a
BLAKE2b-256 d79855bcd20ff1ae5bfa3dccec20e42b68a92847aaa4d8686ac52bb9f5eeb617

See more details on using hashes here.

File details

Details for the file pymatgen-2023.7.17-cp39-cp39-win32.whl.

File metadata

  • Download URL: pymatgen-2023.7.17-cp39-cp39-win32.whl
  • Upload date:
  • Size: 10.2 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.4

File hashes

Hashes for pymatgen-2023.7.17-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 c1becace38311c0afa7b23e73dc8f9b09706f4e5a2d8470be64c431df1a4be37
MD5 4058898f075569a865d7a0de2f79ab2d
BLAKE2b-256 4494fb5c3153aa3212c243587cac12d3e3482862492cf24caebbeb5e347bde0b

See more details on using hashes here.

File details

Details for the file pymatgen-2023.7.17-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pymatgen-2023.7.17-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 de6c0855b96c75a540bc798c6e4973573812dd55f693133e81b362221f3f403a
MD5 7d70866fc6ca0c7d892d60598b502fa8
BLAKE2b-256 6405d907ec7a336aab7d512dac3a934bf1ee5a3e4ea9541b8d1b35bb89698a36

See more details on using hashes here.

File details

Details for the file pymatgen-2023.7.17-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pymatgen-2023.7.17-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 7561cc649fdb41a737c12e8b6b8b0b8867beb62eadcb6d6dfcc1ee1f802c7a3b
MD5 a8335708f3e2a88fe8ee4d573dfaacfb
BLAKE2b-256 6a5088123e16ce60e4ae4cce48125663df4f065c0b41ae189436b954440b2517

See more details on using hashes here.

File details

Details for the file pymatgen-2023.7.17-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pymatgen-2023.7.17-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9c01db9861e0bb4a634290004004d015294a875472a499baa57f1777dd3d7679
MD5 0a1cabed46dfe5fe3928de95b6751630
BLAKE2b-256 0b397441e04400dc9f3193e01c20832ca5a31ee982245f708cbd027b419dea9d

See more details on using hashes here.

File details

Details for the file pymatgen-2023.7.17-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pymatgen-2023.7.17-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 178587498646acd83e52361e5c34f981fcb72a067ba2ced0a9ccfcc667017f73
MD5 8d693704908ad2fff0e9dc4e61a7755f
BLAKE2b-256 937244ed0e9a725e43d9bf8f237f01608733639855fc1bf8977292f29f31b189

See more details on using hashes here.

File details

Details for the file pymatgen-2023.7.17-cp38-cp38-win32.whl.

File metadata

  • Download URL: pymatgen-2023.7.17-cp38-cp38-win32.whl
  • Upload date:
  • Size: 10.2 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.4

File hashes

Hashes for pymatgen-2023.7.17-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 bc6d00001151d97bb0ade487f1f4b232f3f1b5fceb8b828b2d776b05c632c954
MD5 bd18942bf11e718e77759d153340a6bb
BLAKE2b-256 f55506497caf6d5f15655682e7d047811b4f4620763338f7544cb0664ff4d244

See more details on using hashes here.

File details

Details for the file pymatgen-2023.7.17-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pymatgen-2023.7.17-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8a554053336d875e0584e316c3d5ef1a371022203098109d997b026c3dc6fe3c
MD5 a64e2846c6a7a290e0a137a2992f0d9d
BLAKE2b-256 4714f3706e3430e9de1b67f5c3c7a1b7b7700663bd68b34a96f94960db0f5938

See more details on using hashes here.

File details

Details for the file pymatgen-2023.7.17-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pymatgen-2023.7.17-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 cebbf5bdc65353089d7a7920fba199e7d646fd3a5b898bae18fb433080d6b1c4
MD5 d2c473e6c6055d4a5cccf4116ccedf07
BLAKE2b-256 eec13b75955ab6786fc35377682aae289dfa4eb0958e498c6942e453e495006c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page