Skip to main content

Python Materials Genomics is a robust materials analysis code that defines core object representations for structures and molecules with support for many electronic structure codes. It is currently the core analysis code powering the Materials Project (https://materialsproject.org).

Project description

Logo

CI Status Coveralls PyPI Downloads Conda Downloads Requires Python 3.8+ arXiv

Pymatgen (Python Materials Genomics) is a robust, open-source Python library for materials analysis. These are some of the main features:

  1. Highly flexible classes for the representation of Element, Site, Molecule and Structure objects.
  2. Extensive input/output support, including support for VASP, ABINIT, CIF, Gaussian, XYZ, and many other file formats.
  3. Powerful analysis tools, including generation of phase diagrams, Pourbaix diagrams, diffusion analyses, reactions, etc.
  4. Electronic structure analyses, such as density of states and band structure.
  5. Integration with the Materials Project REST API.

Pymatgen is free to use. However, we also welcome your help to improve this library by making your contributions. These contributions can be in the form of additional tools or modules you develop, or feature requests and bug reports. The following are resources for pymatgen:

Why use pymatgen?

  1. It is (fairly) robust. Pymatgen is used by thousands of researchers and is the analysis code powering the Materials Project. The analysis it produces survives rigorous scrutiny every single day. Bugs tend to be found and corrected quickly. Pymatgen also uses Github Actions for continuous integration, which ensures that every new code passes a comprehensive suite of unit tests.
  2. It is well documented. A fairly comprehensive documentation has been written to help you get to grips with it quickly.
  3. It is open. You are free to use and contribute to pymatgen. It also means that pymatgen is continuously being improved. We will attribute any code you contribute to any publication you specify. Contributing to pymatgen means your research becomes more visible, which translates to greater impact.
  4. It is fast. Many of the core numerical methods in pymatgen have been optimized by vectorizing in numpy/scipy. This means that coordinate manipulations are fast. Pymatgen also comes with a complete system for handling periodic boundary conditions.
  5. It will be around. Pymatgen is not a pet research project. It is used in the well-established Materials Project. It is also actively being developed and maintained by the Materials Virtual Lab, the ABINIT group and many other research groups.
  6. A growing ecosystem of developers and add-ons. Pymatgen has contributions from materials scientists all over the world. We also now have an architecture to support add-ons that expand pymatgen's functionality even further. Check out the contributing page and add-ons page for details and examples.

Installation

The version at the Python Package Index PyPI is always the latest stable release that is relatively bug-free and can be installed via pip:

pip install pymatgen

If you'd like to use the latest unreleased changes on the main branch, you can install directly from GitHub:

pip install -U git+https://github.com/materialsproject/pymatgen

The minimum Python version is 3.8. Some extra functionality (e.g., generation of POTCARs) does require additional setup (see the pymatgen docs).

Change Log

Please check GitHub releases and commit history for the latest changes. A legacy changelog is still up at https://pymatgen.org/change_log.

Using pymatgen

Please refer to the official pymatgen docs for tutorials and examples.

How to cite pymatgen

If you use pymatgen in your research, please consider citing the following work:

Shyue Ping Ong, William Davidson Richards, Anubhav Jain, Geoffroy Hautier, Michael Kocher, Shreyas Cholia, Dan Gunter, Vincent Chevrier, Kristin A. Persson, Gerbrand Ceder. Python Materials Genomics (pymatgen): A Robust, Open-Source Python Library for Materials Analysis. Computational Materials Science, 2013, 68, 314-319. doi:10.1016/j.commatsci.2012.10.028

In addition, some of pymatgen's functionality is based on scientific advances/principles developed by the computational materials scientists in our team. Please refer to the pymatgen docs on how to cite them.

License

Pymatgen is released under the MIT License. The terms of the license are as follows:

The MIT License (MIT) Copyright (c) 2011-2012 MIT & LBNL

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

About the Pymatgen Development Team

Shyue Ping Ong of the Materials Virtual Lab started Pymatgen in 2011 and is still the project lead.

The pymatgen development team is the set of all contributors to the pymatgen project, including all subprojects.

Our Copyright Policy

Pymatgen uses a shared copyright model. Each contributor maintains copyright over their contributions to pymatgen. But, it is important to note that these contributions are typically only changes to the repositories. Thus, the pymatgen source code, in its entirety is not the copyright of any single person or institution. Instead, it is the collective copyright of the entire pymatgen Development Team. If individual contributors want to maintain a record of what changes/contributions they have specific copyright on, they should indicate their copyright in the commit message of the change, when they commit the change to one of the pymatgen repositories.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pymatgen-2023.7.20.tar.gz (9.7 MB view details)

Uploaded Source

Built Distributions

pymatgen-2023.7.20-cp311-cp311-win_amd64.whl (10.2 MB view details)

Uploaded CPython 3.11 Windows x86-64

pymatgen-2023.7.20-cp311-cp311-win32.whl (10.2 MB view details)

Uploaded CPython 3.11 Windows x86

pymatgen-2023.7.20-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.7 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pymatgen-2023.7.20-cp311-cp311-macosx_10_9_x86_64.whl (10.3 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pymatgen-2023.7.20-cp310-cp310-win_amd64.whl (10.2 MB view details)

Uploaded CPython 3.10 Windows x86-64

pymatgen-2023.7.20-cp310-cp310-win32.whl (10.2 MB view details)

Uploaded CPython 3.10 Windows x86

pymatgen-2023.7.20-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pymatgen-2023.7.20-cp310-cp310-macosx_10_9_x86_64.whl (10.3 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pymatgen-2023.7.20-cp39-cp39-win_amd64.whl (10.2 MB view details)

Uploaded CPython 3.9 Windows x86-64

pymatgen-2023.7.20-cp39-cp39-win32.whl (10.2 MB view details)

Uploaded CPython 3.9 Windows x86

pymatgen-2023.7.20-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pymatgen-2023.7.20-cp39-cp39-macosx_10_9_x86_64.whl (10.3 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pymatgen-2023.7.20-cp38-cp38-win_amd64.whl (10.2 MB view details)

Uploaded CPython 3.8 Windows x86-64

pymatgen-2023.7.20-cp38-cp38-win32.whl (10.2 MB view details)

Uploaded CPython 3.8 Windows x86

pymatgen-2023.7.20-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pymatgen-2023.7.20-cp38-cp38-macosx_10_9_x86_64.whl (10.3 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file pymatgen-2023.7.20.tar.gz.

File metadata

  • Download URL: pymatgen-2023.7.20.tar.gz
  • Upload date:
  • Size: 9.7 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.4

File hashes

Hashes for pymatgen-2023.7.20.tar.gz
Algorithm Hash digest
SHA256 64e10a9b04d305dad2de5298d83e0bcec91f0bad57893fc24e79bd0873638e99
MD5 471de95b08368e8b80dbffd5baf1d475
BLAKE2b-256 6f278d004bc60edc05ed5ff43102a13bf33c45eaa2206beefffac598d1fa0a44

See more details on using hashes here.

File details

Details for the file pymatgen-2023.7.20-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pymatgen-2023.7.20-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 3ee941c049be9edadbd7c9529de5d5a5c99f768ad6ae22be4896c914aca9d259
MD5 cc268e1ad6d8cca2ff1a33a87ed19bc5
BLAKE2b-256 b70d8cc51e1156013cbc1c8722be2898be0c9db858a5794d3f5576569af679c5

See more details on using hashes here.

File details

Details for the file pymatgen-2023.7.20-cp311-cp311-win32.whl.

File metadata

File hashes

Hashes for pymatgen-2023.7.20-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 d9ac95038c1aa5e3ef3bb3f258a68fa8524b852c0a6614f13233460790974b3a
MD5 5f11b209b4d8ecbab8c8cbb06cefccba
BLAKE2b-256 d70fb0708dd6c77be1587fb5995d87379afd95316a742133a313e96eee01e543

See more details on using hashes here.

File details

Details for the file pymatgen-2023.7.20-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pymatgen-2023.7.20-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6bb2579c68111ee4979b66140af8c4198180d17aeb4d5141b9ebba3d07a19247
MD5 c7d4f8c55b421f8e4b1a3acd2ddf7426
BLAKE2b-256 64b3cc102e7b641b8ff4d92c98e25025b5dcb62868b214bc43b16813b2750804

See more details on using hashes here.

File details

Details for the file pymatgen-2023.7.20-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pymatgen-2023.7.20-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f35193cebd93a53a5a3759ecb62f09cef2f776cbad920358e437e91dfd537c87
MD5 6ea3a39a59a2ed8f68624c90690d4980
BLAKE2b-256 97558f961914141f5090e8a92dadf33bb0d369bdcfa695f72c77fe20266592f2

See more details on using hashes here.

File details

Details for the file pymatgen-2023.7.20-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pymatgen-2023.7.20-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 000317ee0111750a7c47df180575e8f2a6e7c904bca4aba1cb584250340e6aa9
MD5 7634b88ab45eaf6402f30ef280d3f855
BLAKE2b-256 1f4264c332d10efa6382e30ae81a64569882755a935cae253d0046afd28ef146

See more details on using hashes here.

File details

Details for the file pymatgen-2023.7.20-cp310-cp310-win32.whl.

File metadata

File hashes

Hashes for pymatgen-2023.7.20-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 d6ca50bebb57c0bddb368fe887396c3f11e712264fa4f9a0f4557d3538b028a6
MD5 bd2beb0b56984787b2b6b5b84c5627c2
BLAKE2b-256 b7ba5707ffc9e53c745c458079f611bcb762551a5b0de139f5482999029c9c1d

See more details on using hashes here.

File details

Details for the file pymatgen-2023.7.20-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pymatgen-2023.7.20-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 34407d5cc1986f6981e6c16fac07a2cb26142e220059d19a3f55e9244eff1bfd
MD5 4b5b2eb18d5e2c9ad29e283396993a40
BLAKE2b-256 3dda236da1e8a396cdf4c3c67dcbf82b79b6bc258ea55cbe886e471e26fabc0a

See more details on using hashes here.

File details

Details for the file pymatgen-2023.7.20-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pymatgen-2023.7.20-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0ac4c0c1d32f45956b1872eca7aa32340c496aace83a1104d4520e5179455219
MD5 b9466da70e6e636084f4db8025b38275
BLAKE2b-256 db9f0403aa8dc6d4bba3c4d76abd313f325490782700a9edda468f0228c58c6e

See more details on using hashes here.

File details

Details for the file pymatgen-2023.7.20-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pymatgen-2023.7.20-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 fa64db9a884c1c3c5c374608ffca3dcca294c5cbf9d22d72e4a6bada9309732c
MD5 3b74b5acdf6928f8a7550974b0c7229c
BLAKE2b-256 351f54a8d4e117aaf9a8cea192d16d8afe42a5a32970c3f5b8f0291309aaab2c

See more details on using hashes here.

File details

Details for the file pymatgen-2023.7.20-cp39-cp39-win32.whl.

File metadata

  • Download URL: pymatgen-2023.7.20-cp39-cp39-win32.whl
  • Upload date:
  • Size: 10.2 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.4

File hashes

Hashes for pymatgen-2023.7.20-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 8738871a63391f9aaead2e462f43d6873ccf0b54baeb50531156f75fa86f1d0a
MD5 320f6ba5def370d59fc83100e00da9a6
BLAKE2b-256 bccc8446aa1a8d94980e20362b25e860be4b11560571671259c3fc5cdb1c4310

See more details on using hashes here.

File details

Details for the file pymatgen-2023.7.20-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pymatgen-2023.7.20-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7e839427e8b63c6e2a984f7178fe4261eb71dfe6798506bf863993414d5b8d32
MD5 853ac5678446b8822303846e0c539649
BLAKE2b-256 f0bb68378ccd34d40fa832b79b3a455737dc2976670ce2edf33a8a793afcb605

See more details on using hashes here.

File details

Details for the file pymatgen-2023.7.20-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pymatgen-2023.7.20-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c9648c429035b8ab9436879680ed1fdf355edf6518b3ab3e4e61cc70a67ac589
MD5 e350054e73c4341630dfb832850a9ff0
BLAKE2b-256 92d4636faf6a0fc3076ebbe1a6669ed029848f234df59b882aab219e045d3a55

See more details on using hashes here.

File details

Details for the file pymatgen-2023.7.20-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pymatgen-2023.7.20-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 975759e4aea4736ec9650fd4655d7400d28825cd6d4b040d6aaa2023212b6d1c
MD5 b4bad68bd6f1c884d789217bcac25daa
BLAKE2b-256 a8969306080770df798d7287ecc3934ecc9d17255f6fc656bdef5a5a5a9c6e56

See more details on using hashes here.

File details

Details for the file pymatgen-2023.7.20-cp38-cp38-win32.whl.

File metadata

  • Download URL: pymatgen-2023.7.20-cp38-cp38-win32.whl
  • Upload date:
  • Size: 10.2 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.4

File hashes

Hashes for pymatgen-2023.7.20-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 f416f8308fd85b74934a82eef9ade19f7286385f76033d52305b911412edf98c
MD5 a64d791fb39add55b4c420416608c001
BLAKE2b-256 8f370f69c52473bf9ad3eb8f014da1ea621a58b96e98ead55e5b86feb99ee8b9

See more details on using hashes here.

File details

Details for the file pymatgen-2023.7.20-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pymatgen-2023.7.20-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f7da6a71be82c89f2c5d207d3d729bf98463463776c5e3dbe30b7cd2052ec0e5
MD5 e71d33172ad8965f4f6f1e146bad44b0
BLAKE2b-256 bc2e9218be9c2eed8a336344a2a7788d11209b0ece519d5bc0277d3131424c55

See more details on using hashes here.

File details

Details for the file pymatgen-2023.7.20-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pymatgen-2023.7.20-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 73477f0a07ac3379cd543c145bc78c6317aa6e7f194edd3777ac9830ec4ff09d
MD5 f3bdf73770b80267ac0295a59f8d4816
BLAKE2b-256 a46646480ff003c258b73863be18fd8567471530e1be42bfd3f24dd1f096a920

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page