Skip to main content

Python Materials Genomics is a robust materials analysis code that defines core object representations for structures and molecules with support for many electronic structure codes. It is currently the core analysis code powering the Materials Project (https://materialsproject.org).

Project description

Logo

CI Status codecov PyPI Downloads Conda Downloads Requires Python 3.9+ arXiv

Pymatgen (Python Materials Genomics) is a robust, open-source Python library for materials analysis. These are some of the main features:

  1. Highly flexible classes for the representation of Element, Site, Molecule and Structure objects.
  2. Extensive input/output support, including support for VASP, ABINIT, CIF, Gaussian, XYZ, and many other file formats.
  3. Powerful analysis tools, including generation of phase diagrams, Pourbaix diagrams, diffusion analyses, reactions, etc.
  4. Electronic structure analyses, such as density of states and band structure.
  5. Integration with the Materials Project REST API.

Pymatgen is free to use. However, we also welcome your help to improve this library by making your contributions. These contributions can be in the form of additional tools or modules you develop, or feature requests and bug reports. The following are resources for pymatgen:

Why use pymatgen?

  1. It is (fairly) robust. Pymatgen is used by thousands of researchers and is the analysis code powering the Materials Project. The analysis it produces survives rigorous scrutiny every single day. Bugs tend to be found and corrected quickly. Pymatgen also uses Github Actions for continuous integration, which ensures that every new code passes a comprehensive suite of unit tests.
  2. It is well documented. A fairly comprehensive documentation has been written to help you get to grips with it quickly.
  3. It is open. You are free to use and contribute to pymatgen. It also means that pymatgen is continuously being improved. We will attribute any code you contribute to any publication you specify. Contributing to pymatgen means your research becomes more visible, which translates to greater impact.
  4. It is fast. Many of the core numerical methods in pymatgen have been optimized by vectorizing in numpy/scipy. This means that coordinate manipulations are fast. Pymatgen also comes with a complete system for handling periodic boundary conditions.
  5. It will be around. Pymatgen is not a pet research project. It is used in the well-established Materials Project. It is also actively being developed and maintained by the Materials Virtual Lab, the ABINIT group and many other research groups.
  6. A growing ecosystem of developers and add-ons. Pymatgen has contributions from materials scientists all over the world. We also now have an architecture to support add-ons that expand pymatgen's functionality even further. Check out the contributing page and add-ons page for details and examples.

Installation

The version at the Python Package Index PyPI is always the latest stable release that is relatively bug-free and can be installed via pip:

pip install pymatgen

If you'd like to use the latest unreleased changes on the main branch, you can install directly from GitHub:

pip install -U git+https://github.com/materialsproject/pymatgen

The minimum Python version is 3.9. Some extra functionality (e.g., generation of POTCARs) does require additional setup (see the pymatgen docs).

Change Log

Please check GitHub releases and commit history for the latest changes. A legacy changelog is still up at https://pymatgen.org/change_log.

Using pymatgen

Please refer to the official pymatgen docs for tutorials and examples.

How to cite pymatgen

If you use pymatgen in your research, please consider citing the following work:

Shyue Ping Ong, William Davidson Richards, Anubhav Jain, Geoffroy Hautier, Michael Kocher, Shreyas Cholia, Dan Gunter, Vincent Chevrier, Kristin A. Persson, Gerbrand Ceder. Python Materials Genomics (pymatgen): A Robust, Open-Source Python Library for Materials Analysis. Computational Materials Science, 2013, 68, 314-319. doi:10.1016/j.commatsci.2012.10.028

In addition, some of pymatgen's functionality is based on scientific advances/principles developed by the computational materials scientists in our team. Please refer to the pymatgen docs on how to cite them.

License

Pymatgen is released under the MIT License. The terms of the license are as follows:

The MIT License (MIT) Copyright (c) 2011-2012 MIT & LBNL

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

About the Pymatgen Development Team

Shyue Ping Ong of the Materials Virtual Lab started Pymatgen in 2011 and is still the project lead.

The pymatgen development team is the set of all contributors to the pymatgen project, including all subprojects.

Our Copyright Policy

Pymatgen uses a shared copyright model. Each contributor maintains copyright over their contributions to pymatgen. But, it is important to note that these contributions are typically only changes to the repositories. Thus, the pymatgen source code, in its entirety is not the copyright of any single person or institution. Instead, it is the collective copyright of the entire pymatgen Development Team. If individual contributors want to maintain a record of what changes/contributions they have specific copyright on, they should indicate their copyright in the commit message of the change, when they commit the change to one of the pymatgen repositories.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pymatgen-2023.9.10.tar.gz (6.8 MB view details)

Uploaded Source

Built Distributions

pymatgen-2023.9.10-cp311-cp311-win_amd64.whl (7.3 MB view details)

Uploaded CPython 3.11 Windows x86-64

pymatgen-2023.9.10-cp311-cp311-win32.whl (7.3 MB view details)

Uploaded CPython 3.11 Windows x86

pymatgen-2023.9.10-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (9.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pymatgen-2023.9.10-cp311-cp311-macosx_10_9_x86_64.whl (7.4 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pymatgen-2023.9.10-cp310-cp310-win_amd64.whl (7.3 MB view details)

Uploaded CPython 3.10 Windows x86-64

pymatgen-2023.9.10-cp310-cp310-win32.whl (7.3 MB view details)

Uploaded CPython 3.10 Windows x86

pymatgen-2023.9.10-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (9.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pymatgen-2023.9.10-cp310-cp310-macosx_10_9_x86_64.whl (7.4 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pymatgen-2023.9.10-cp39-cp39-win_amd64.whl (7.3 MB view details)

Uploaded CPython 3.9 Windows x86-64

pymatgen-2023.9.10-cp39-cp39-win32.whl (7.3 MB view details)

Uploaded CPython 3.9 Windows x86

pymatgen-2023.9.10-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (9.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pymatgen-2023.9.10-cp39-cp39-macosx_10_9_x86_64.whl (7.4 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

File details

Details for the file pymatgen-2023.9.10.tar.gz.

File metadata

  • Download URL: pymatgen-2023.9.10.tar.gz
  • Upload date:
  • Size: 6.8 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for pymatgen-2023.9.10.tar.gz
Algorithm Hash digest
SHA256 1250bb0f7063ae576db7010ed20d00ac826518c011a8a56bd51fe2920a3344cd
MD5 0eaf1eadfad92311ad63d0ef22be899b
BLAKE2b-256 f08af499ee265d1fc17153b5cd2302c76e5ef1547c161d8beee71a58f71abbb5

See more details on using hashes here.

File details

Details for the file pymatgen-2023.9.10-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pymatgen-2023.9.10-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 4fe7126ef37caf560fe6291726a39e03d555ab3464511a3f0882428d6f3dd06a
MD5 774fa8d066528d75142ff8e38c764a61
BLAKE2b-256 b03ca3f47d51e2e896f9e62de8da60355a5b36a3e7760c6ce8a906484f174f80

See more details on using hashes here.

File details

Details for the file pymatgen-2023.9.10-cp311-cp311-win32.whl.

File metadata

File hashes

Hashes for pymatgen-2023.9.10-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 6ae36d0125d0141f8de0592eb885fbcabfd5d89a968318c08f23938d28e36415
MD5 bce628d403b7bc8219fab806c7bfa370
BLAKE2b-256 2ad7676334728334c1895691c73acbf3fa83c82811a05ab19654640c9520d2ec

See more details on using hashes here.

File details

Details for the file pymatgen-2023.9.10-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pymatgen-2023.9.10-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a2c17a3177907db920e1fa94d4efe4cd0312ade2950f418774f8dd39d8f9869c
MD5 2fc012a99df03b491fb66653a07b3ac9
BLAKE2b-256 dd93bde42ce6f969388c11e3c0d10e9c668e6822e36436c4dd47bcd370a79ecb

See more details on using hashes here.

File details

Details for the file pymatgen-2023.9.10-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pymatgen-2023.9.10-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f405b11be8a92dd0680ed5198af78757bfe75cd3420253d168088669d0bcd31a
MD5 92f7fa0f6d597111e0692e06b0fc848b
BLAKE2b-256 3801f27195417c463f97a1b80de2b7d81c895eae16dc4ecc8082920f74ff197a

See more details on using hashes here.

File details

Details for the file pymatgen-2023.9.10-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pymatgen-2023.9.10-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 4f5966ccce041dbafe7b83a08c7df5361729e59a97f2c8a92c118f1423ca34a7
MD5 f8eb6018d638c271206a1a4f156db6a3
BLAKE2b-256 f3790f0994dc62bfe2a51a838d3362ac2f15500c499d3f299e409cfb6d0e0a2f

See more details on using hashes here.

File details

Details for the file pymatgen-2023.9.10-cp310-cp310-win32.whl.

File metadata

File hashes

Hashes for pymatgen-2023.9.10-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 a52bf1f34de56825ac1036d1c0242639b97df28ab7c92b8e85ec4a72842d1fd3
MD5 1f0fceacf3788dc579e5d6d3a7e2e7b1
BLAKE2b-256 3116c83a190d766fc26a1005886396c2045e063ac6fec32ff7a78b00b6f66a38

See more details on using hashes here.

File details

Details for the file pymatgen-2023.9.10-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pymatgen-2023.9.10-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7bdddc6195b162dbf97fb3f0035f6d0bb488a610fe84b433a7d28d14a0cf6c0a
MD5 8f78f99a4ce9ab2fce613b055f37d6ad
BLAKE2b-256 17c1ece20977ce340a1f2b45b3a1361602d2131d304232c3eee2c6195c49862e

See more details on using hashes here.

File details

Details for the file pymatgen-2023.9.10-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pymatgen-2023.9.10-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 caa73780f89e53b91f464f6f9d2e136c819edcc1811e99ad1f9d00e10c63bc2b
MD5 8cfe0bbf851efab9092a32ea8f15c640
BLAKE2b-256 12a90471f7d9c9cd599e76d3c4eb3e6c5376604482d5688498f608fc0d42e359

See more details on using hashes here.

File details

Details for the file pymatgen-2023.9.10-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pymatgen-2023.9.10-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 b3ccf1f6852a0317c147d60bcde55f88ffcdc75d79006bfd546121ddb468588e
MD5 0beea2d0616fbcfc266cb6faae1913ce
BLAKE2b-256 b19d6fb011b3c77acdc20b5b9377ea378d7601edd63a65224f1c0ff204834cac

See more details on using hashes here.

File details

Details for the file pymatgen-2023.9.10-cp39-cp39-win32.whl.

File metadata

  • Download URL: pymatgen-2023.9.10-cp39-cp39-win32.whl
  • Upload date:
  • Size: 7.3 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for pymatgen-2023.9.10-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 b971fb1cb597dcb81139bfed1cf041d028c7993a6016578447060b77c47a4954
MD5 8e084d5a64bdd36414fcbced4806d77c
BLAKE2b-256 e345d775a4bc6cc040da07de6e0221a5c304c6e2f336a07001d61d3ba27be836

See more details on using hashes here.

File details

Details for the file pymatgen-2023.9.10-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pymatgen-2023.9.10-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f1b9b4e578d4f389e165c946561052672f9dc609bbafe553ac8f39bd2ed1e9c3
MD5 fff29cd9868b31fd7d050f1044c9ab9f
BLAKE2b-256 f30260d5a9fede0301d813a2ec5b8267ef575c0d04aa92ca218a5f8f80bc9e42

See more details on using hashes here.

File details

Details for the file pymatgen-2023.9.10-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pymatgen-2023.9.10-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 965fc3509edb634495c3a64877dae46ec6b7c26d5a1f020bfadc1daf6228793b
MD5 997c1ac87acb94520a1495239dc57d8b
BLAKE2b-256 fc61fd303de68229b17bffc2247c0391968e3c763385d61865d05221e68d6ba4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page