Skip to main content

Python Materials Genomics is a robust materials analysis code that defines core object representations for structures and molecules with support for many electronic structure codes. It is currently the core analysis code powering the Materials Project (https://materialsproject.org).

Project description

Logo

CI Status codecov PyPI Downloads Conda Downloads Requires Python 3.8+ arXiv

Pymatgen (Python Materials Genomics) is a robust, open-source Python library for materials analysis. These are some of the main features:

  1. Highly flexible classes for the representation of Element, Site, Molecule and Structure objects.
  2. Extensive input/output support, including support for VASP, ABINIT, CIF, Gaussian, XYZ, and many other file formats.
  3. Powerful analysis tools, including generation of phase diagrams, Pourbaix diagrams, diffusion analyses, reactions, etc.
  4. Electronic structure analyses, such as density of states and band structure.
  5. Integration with the Materials Project REST API.

Pymatgen is free to use. However, we also welcome your help to improve this library by making your contributions. These contributions can be in the form of additional tools or modules you develop, or feature requests and bug reports. The following are resources for pymatgen:

Why use pymatgen?

  1. It is (fairly) robust. Pymatgen is used by thousands of researchers and is the analysis code powering the Materials Project. The analysis it produces survives rigorous scrutiny every single day. Bugs tend to be found and corrected quickly. Pymatgen also uses Github Actions for continuous integration, which ensures that every new code passes a comprehensive suite of unit tests.
  2. It is well documented. A fairly comprehensive documentation has been written to help you get to grips with it quickly.
  3. It is open. You are free to use and contribute to pymatgen. It also means that pymatgen is continuously being improved. We will attribute any code you contribute to any publication you specify. Contributing to pymatgen means your research becomes more visible, which translates to greater impact.
  4. It is fast. Many of the core numerical methods in pymatgen have been optimized by vectorizing in numpy/scipy. This means that coordinate manipulations are fast. Pymatgen also comes with a complete system for handling periodic boundary conditions.
  5. It will be around. Pymatgen is not a pet research project. It is used in the well-established Materials Project. It is also actively being developed and maintained by the Materials Virtual Lab, the ABINIT group and many other research groups.
  6. A growing ecosystem of developers and add-ons. Pymatgen has contributions from materials scientists all over the world. We also now have an architecture to support add-ons that expand pymatgen's functionality even further. Check out the contributing page and add-ons page for details and examples.

Installation

The version at the Python Package Index PyPI is always the latest stable release that is relatively bug-free and can be installed via pip:

pip install pymatgen

If you'd like to use the latest unreleased changes on the main branch, you can install directly from GitHub:

pip install -U git+https://github.com/materialsproject/pymatgen

The minimum Python version is 3.9. Some extra functionality (e.g., generation of POTCARs) does require additional setup (see the pymatgen docs).

Change Log

Please check GitHub releases and commit history for the latest changes. A legacy changelog is still up at https://pymatgen.org/change_log.

Using pymatgen

Please refer to the official pymatgen docs for tutorials and examples.

How to cite pymatgen

If you use pymatgen in your research, please consider citing the following work:

Shyue Ping Ong, William Davidson Richards, Anubhav Jain, Geoffroy Hautier, Michael Kocher, Shreyas Cholia, Dan Gunter, Vincent Chevrier, Kristin A. Persson, Gerbrand Ceder. Python Materials Genomics (pymatgen): A Robust, Open-Source Python Library for Materials Analysis. Computational Materials Science, 2013, 68, 314-319. doi:10.1016/j.commatsci.2012.10.028

In addition, some of pymatgen's functionality is based on scientific advances/principles developed by the computational materials scientists in our team. Please refer to the pymatgen docs on how to cite them.

License

Pymatgen is released under the MIT License. The terms of the license are as follows:

The MIT License (MIT) Copyright (c) 2011-2012 MIT & LBNL

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

About the Pymatgen Development Team

Shyue Ping Ong of the Materials Virtual Lab started Pymatgen in 2011 and is still the project lead.

The pymatgen development team is the set of all contributors to the pymatgen project, including all subprojects.

Our Copyright Policy

Pymatgen uses a shared copyright model. Each contributor maintains copyright over their contributions to pymatgen. But, it is important to note that these contributions are typically only changes to the repositories. Thus, the pymatgen source code, in its entirety is not the copyright of any single person or institution. Instead, it is the collective copyright of the entire pymatgen Development Team. If individual contributors want to maintain a record of what changes/contributions they have specific copyright on, they should indicate their copyright in the commit message of the change, when they commit the change to one of the pymatgen repositories.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pymatgen-2023.9.2.tar.gz (6.8 MB view details)

Uploaded Source

Built Distributions

pymatgen-2023.9.2-cp311-cp311-win_amd64.whl (7.3 MB view details)

Uploaded CPython 3.11 Windows x86-64

pymatgen-2023.9.2-cp311-cp311-win32.whl (7.3 MB view details)

Uploaded CPython 3.11 Windows x86

pymatgen-2023.9.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (9.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pymatgen-2023.9.2-cp311-cp311-macosx_10_9_x86_64.whl (7.4 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pymatgen-2023.9.2-cp310-cp310-win_amd64.whl (7.3 MB view details)

Uploaded CPython 3.10 Windows x86-64

pymatgen-2023.9.2-cp310-cp310-win32.whl (7.3 MB view details)

Uploaded CPython 3.10 Windows x86

pymatgen-2023.9.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (9.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pymatgen-2023.9.2-cp310-cp310-macosx_10_9_x86_64.whl (7.4 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pymatgen-2023.9.2-cp39-cp39-win_amd64.whl (7.3 MB view details)

Uploaded CPython 3.9 Windows x86-64

pymatgen-2023.9.2-cp39-cp39-win32.whl (7.3 MB view details)

Uploaded CPython 3.9 Windows x86

pymatgen-2023.9.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (9.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pymatgen-2023.9.2-cp39-cp39-macosx_11_0_arm64.whl (7.3 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pymatgen-2023.9.2-cp39-cp39-macosx_10_9_x86_64.whl (7.4 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

File details

Details for the file pymatgen-2023.9.2.tar.gz.

File metadata

  • Download URL: pymatgen-2023.9.2.tar.gz
  • Upload date:
  • Size: 6.8 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.17

File hashes

Hashes for pymatgen-2023.9.2.tar.gz
Algorithm Hash digest
SHA256 71907fd0f54b56ecc0d4c12fc8f2d47e8e926e4f130b9faba6ed2ebebe449d19
MD5 a8ea602e8cdf23db071d189c47702933
BLAKE2b-256 4868bf0f25d1bc860d5d18379ec65249dac52fc2a56390f8e9fd30a870e5cbb2

See more details on using hashes here.

File details

Details for the file pymatgen-2023.9.2-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pymatgen-2023.9.2-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 2df35e89564996b5130fc45027146445003e1af8258240c0c38f4bb1c381ca37
MD5 bc877da82b90bd6d83ab498e4cb15b3d
BLAKE2b-256 419979e6d12df49309fddbfc83571e1ed018ba0813385f1eb6a2d76a5b5f8bd2

See more details on using hashes here.

File details

Details for the file pymatgen-2023.9.2-cp311-cp311-win32.whl.

File metadata

  • Download URL: pymatgen-2023.9.2-cp311-cp311-win32.whl
  • Upload date:
  • Size: 7.3 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for pymatgen-2023.9.2-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 324e7b24948c5129caa5fe8b95fa6bf841e5489b911ec1ccc67c74e2f8647da7
MD5 3680a73fe35c333e4ff3f69080c0c557
BLAKE2b-256 35a2713f4732ab374fe391b698b75c4c1aebd950f1fffc26c2ba926af653f56f

See more details on using hashes here.

File details

Details for the file pymatgen-2023.9.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pymatgen-2023.9.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bd84b7317bf67970938690bf654186ddae98431e5d76f412ac2e164e701fe390
MD5 31319cc704804a82f64e3b50ca040f7e
BLAKE2b-256 bbf7dac87fcc4659c9fad1cb5b91149dd661d8a9061d3ea2cd68f7fba257185b

See more details on using hashes here.

File details

Details for the file pymatgen-2023.9.2-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pymatgen-2023.9.2-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5abd0934bf9e18470014734b370ad424a5f7974b2b9798cd322b295e9e07b411
MD5 a9c4bf0d645f6b722c283cbea29dbc2f
BLAKE2b-256 cd6f0cde0062fbeb47306755dfd7469ec7c62447c92a9403d2a8b9a7b138c879

See more details on using hashes here.

File details

Details for the file pymatgen-2023.9.2-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pymatgen-2023.9.2-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 a31afb5cdcc38879b4d28af989dcf6f0f25afb41ab75d8427714b3a8f087de18
MD5 927d903a920a9ec6cb4c20d499ef1cd6
BLAKE2b-256 54f31b169a8c9b7aed3f03d80242f77017be9bbdc140a9c570de56a7895f0637

See more details on using hashes here.

File details

Details for the file pymatgen-2023.9.2-cp310-cp310-win32.whl.

File metadata

  • Download URL: pymatgen-2023.9.2-cp310-cp310-win32.whl
  • Upload date:
  • Size: 7.3 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for pymatgen-2023.9.2-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 33fd1b95d9ba95656f9ee2cde12600257406fcecd33d9b8e5086fcd0aa2dc0a2
MD5 ae91150d39406a28f3b94a24721151b6
BLAKE2b-256 a878b9fbd1478664a44612306eccf3c4bc35e7abc1460844f6c8c8adab7e2518

See more details on using hashes here.

File details

Details for the file pymatgen-2023.9.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pymatgen-2023.9.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 64f1417845c35687625436af9839409d314907e48571c70e75f2b075c9276322
MD5 2f0ba8a70fb6766a0a599ff607a66015
BLAKE2b-256 1f7cf034079a29451961a0de3445860cb8807ba8b9806a12ed7e8d8a31704460

See more details on using hashes here.

File details

Details for the file pymatgen-2023.9.2-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pymatgen-2023.9.2-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 79bbc986a1ea8f818bf552b140eb864043aa71de617428e10bd7f7ac6e0c17d4
MD5 f718acd2e79bf8f945e9e2262a1896e8
BLAKE2b-256 82e6ec7095525ce430ec02f12fd607e5679b98ef58bfbc4f0495a1a0a0f45f0d

See more details on using hashes here.

File details

Details for the file pymatgen-2023.9.2-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pymatgen-2023.9.2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 c2b72287e3342d4566c097c48e7b1ea435c27db14846b4ec58c0e17c52836317
MD5 c6fe9565aad94ce9babc0bc503ffac19
BLAKE2b-256 e21ff229de411c83714a7d1d2149f5832c2838335d454160d7d854f7ff821576

See more details on using hashes here.

File details

Details for the file pymatgen-2023.9.2-cp39-cp39-win32.whl.

File metadata

  • Download URL: pymatgen-2023.9.2-cp39-cp39-win32.whl
  • Upload date:
  • Size: 7.3 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for pymatgen-2023.9.2-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 a06ebda5b2a451402e6151c434eb62961e9e5c68b753228e1eda196604195de0
MD5 a8585bb9387864f2810014786e9ec6d5
BLAKE2b-256 a911916b23af7b94f5d06670c2744bc0d69331b8544eb58ce5344ac3d6dd92b5

See more details on using hashes here.

File details

Details for the file pymatgen-2023.9.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pymatgen-2023.9.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 088e9d0cc51ab79f6b9b1a3aa553419575a68ba3665b37313edf44e49055d2d9
MD5 ecf32d56ce933ea63a7c67954c7ff136
BLAKE2b-256 b209e5bdd8036d9573433fae03f5730e72b2bffb3ab0ded9366269ed89ab3b2f

See more details on using hashes here.

File details

Details for the file pymatgen-2023.9.2-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pymatgen-2023.9.2-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ea61ada4c8eec52132fdf2a6818d8a988fd850e56d78ba74c651594fe4eb1f3e
MD5 6ab539004012ba002316db781284e54e
BLAKE2b-256 5c23fddabdde75fced7f555f8ce2f44a84e884fa638d8efaee6415c3f621f25e

See more details on using hashes here.

File details

Details for the file pymatgen-2023.9.2-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pymatgen-2023.9.2-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b9a0f31653d9e8942f03f0e31d093654c285b959ab262f30ebb835f16c1e2977
MD5 36f7baedead6597c4ce8e6a76a5a5b20
BLAKE2b-256 c67f061349acef19d7e7f8dd82ed6c8233e056765a3345ee8f19ca28a4d7d79e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page