Skip to main content

Python Materials Genomics is a robust materials analysis code that defines core object representations for structures and molecules with support for many electronic structure codes. It is currently the core analysis code powering the Materials Project (https://materialsproject.org).

Project description

Logo

CI Status codecov PyPI Downloads Conda Downloads Requires Python 3.9+ arXiv

Pymatgen (Python Materials Genomics) is a robust, open-source Python library for materials analysis. These are some of the main features:

  1. Highly flexible classes for the representation of Element, Site, Molecule and Structure objects.
  2. Extensive input/output support, including support for VASP, ABINIT, CIF, Gaussian, XYZ, and many other file formats.
  3. Powerful analysis tools, including generation of phase diagrams, Pourbaix diagrams, diffusion analyses, reactions, etc.
  4. Electronic structure analyses, such as density of states and band structure.
  5. Integration with the Materials Project REST API.

Pymatgen is free to use. However, we also welcome your help to improve this library by making your contributions. These contributions can be in the form of additional tools or modules you develop, or feature requests and bug reports. The following are resources for pymatgen:

Why use pymatgen?

  1. It is (fairly) robust. Pymatgen is used by thousands of researchers and is the analysis code powering the Materials Project. The analysis it produces survives rigorous scrutiny every single day. Bugs tend to be found and corrected quickly. Pymatgen also uses Github Actions for continuous integration, which ensures that every new code passes a comprehensive suite of unit tests.
  2. It is well documented. A fairly comprehensive documentation has been written to help you get to grips with it quickly.
  3. It is open. You are free to use and contribute to pymatgen. It also means that pymatgen is continuously being improved. We will attribute any code you contribute to any publication you specify. Contributing to pymatgen means your research becomes more visible, which translates to greater impact.
  4. It is fast. Many of the core numerical methods in pymatgen have been optimized by vectorizing in numpy/scipy. This means that coordinate manipulations are fast. Pymatgen also comes with a complete system for handling periodic boundary conditions.
  5. It will be around. Pymatgen is not a pet research project. It is used in the well-established Materials Project. It is also actively being developed and maintained by the Materials Virtual Lab, the ABINIT group and many other research groups.
  6. A growing ecosystem of developers and add-ons. Pymatgen has contributions from materials scientists all over the world. We also now have an architecture to support add-ons that expand pymatgen's functionality even further. Check out the contributing page and add-ons page for details and examples.

Installation

The version at the Python Package Index PyPI is always the latest stable release that is relatively bug-free and can be installed via pip:

pip install pymatgen

If you'd like to use the latest unreleased changes on the main branch, you can install directly from GitHub:

pip install -U git+https://github.com/materialsproject/pymatgen

The minimum Python version is 3.9. Some extra functionality (e.g., generation of POTCARs) does require additional setup (see the pymatgen docs).

Change Log

Please check GitHub releases and commit history for the latest changes. A legacy changelog is still up at https://pymatgen.org/change_log.

Using pymatgen

Please refer to the official pymatgen docs for tutorials and examples.

How to cite pymatgen

If you use pymatgen in your research, please consider citing the following work:

Shyue Ping Ong, William Davidson Richards, Anubhav Jain, Geoffroy Hautier, Michael Kocher, Shreyas Cholia, Dan Gunter, Vincent Chevrier, Kristin A. Persson, Gerbrand Ceder. Python Materials Genomics (pymatgen): A Robust, Open-Source Python Library for Materials Analysis. Computational Materials Science, 2013, 68, 314-319. doi:10.1016/j.commatsci.2012.10.028

In addition, some of pymatgen's functionality is based on scientific advances/principles developed by the computational materials scientists in our team. Please refer to the pymatgen docs on how to cite them.

Soliciting contributions to an updated pymatgen paper

If you are a long-standing pymatgen contributor and would like to be involved in working on an updated pymatgen publication, please contact the maintainers @shyuep, @mkhorton and @janosh.

License

Pymatgen is released under the MIT License. The terms of the license are as follows:

The MIT License (MIT) Copyright (c) 2011-2012 MIT & LBNL

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

About the Pymatgen Development Team

Shyue Ping Ong of the Materials Virtual Lab started Pymatgen in 2011 and is still the project lead.

The pymatgen development team is the set of all contributors to the pymatgen project, including all subprojects.

Our Copyright Policy

Pymatgen uses a shared copyright model. Each contributor maintains copyright over their contributions to pymatgen. But, it is important to note that these contributions are typically only changes to the repositories. Thus, the pymatgen source code, in its entirety is not the copyright of any single person or institution. Instead, it is the collective copyright of the entire pymatgen Development Team. If individual contributors want to maintain a record of what changes/contributions they have specific copyright on, they should indicate their copyright in the commit message of the change, when they commit the change to one of the pymatgen repositories.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pymatgen-2023.9.25.tar.gz (6.8 MB view details)

Uploaded Source

Built Distributions

pymatgen-2023.9.25-cp311-cp311-win_amd64.whl (7.4 MB view details)

Uploaded CPython 3.11 Windows x86-64

pymatgen-2023.9.25-cp311-cp311-win32.whl (7.3 MB view details)

Uploaded CPython 3.11 Windows x86

pymatgen-2023.9.25-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (9.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pymatgen-2023.9.25-cp311-cp311-macosx_10_9_x86_64.whl (7.4 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pymatgen-2023.9.25-cp310-cp310-win_amd64.whl (7.4 MB view details)

Uploaded CPython 3.10 Windows x86-64

pymatgen-2023.9.25-cp310-cp310-win32.whl (7.3 MB view details)

Uploaded CPython 3.10 Windows x86

pymatgen-2023.9.25-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (9.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pymatgen-2023.9.25-cp310-cp310-macosx_10_9_x86_64.whl (7.4 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pymatgen-2023.9.25-cp39-cp39-win_amd64.whl (7.4 MB view details)

Uploaded CPython 3.9 Windows x86-64

pymatgen-2023.9.25-cp39-cp39-win32.whl (7.3 MB view details)

Uploaded CPython 3.9 Windows x86

pymatgen-2023.9.25-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (9.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pymatgen-2023.9.25-cp39-cp39-macosx_11_0_arm64.whl (7.3 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pymatgen-2023.9.25-cp39-cp39-macosx_10_9_x86_64.whl (7.4 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

File details

Details for the file pymatgen-2023.9.25.tar.gz.

File metadata

  • Download URL: pymatgen-2023.9.25.tar.gz
  • Upload date:
  • Size: 6.8 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for pymatgen-2023.9.25.tar.gz
Algorithm Hash digest
SHA256 f76ff146ce8143b523383b3aa692e98f338205264708c2cae771431f2506edc4
MD5 844ef7be744a540b37a23e72f22e7a43
BLAKE2b-256 1f98337cce84ee80ad9caa2db3f28573c446deb1561b8d1962e2302ab8067b88

See more details on using hashes here.

File details

Details for the file pymatgen-2023.9.25-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pymatgen-2023.9.25-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 df92a831cbf56768bc0772f19dcd14fc127b6067f928870d8d00d0ec73a9f29a
MD5 fa2689cf6572eb4814f3d25a2296627d
BLAKE2b-256 f69f444dddb517b6b7a142a20c2b4a7355ee00c1371c841752935c3fd2a6cc78

See more details on using hashes here.

File details

Details for the file pymatgen-2023.9.25-cp311-cp311-win32.whl.

File metadata

File hashes

Hashes for pymatgen-2023.9.25-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 b54f6dbee39fdb8b68928d9b1b3cf0ed17bdbd4e143325daa6c77c2640314ce8
MD5 a46f12b06fbacdfd3e85af1a23a17ea6
BLAKE2b-256 f103e8f14a73124c8488ae039b56aa8442a483f2979c242704230cd00038980e

See more details on using hashes here.

File details

Details for the file pymatgen-2023.9.25-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pymatgen-2023.9.25-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 70b1e3dceb0d3b51f1ce8b11a125a56b98e6dac567fa1756ac3808ac38c33801
MD5 9088425899735b0d4aa45f6eba7250ab
BLAKE2b-256 2f7434f3d261b3fb41229c19acd67c39f9102fb5c53ac0ab06c8254b427ea7e5

See more details on using hashes here.

File details

Details for the file pymatgen-2023.9.25-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pymatgen-2023.9.25-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 35e3bebe51bea00fabd7802454d013ff909711d32ab302906d1de7ef746785df
MD5 10b0a97d5763e44a35e50157acc771b5
BLAKE2b-256 942554a0da147ead5d0f75a8695ad7c94d693344226464ae49113ce9c828381d

See more details on using hashes here.

File details

Details for the file pymatgen-2023.9.25-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pymatgen-2023.9.25-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 4f50e69efa723ade050baf5fd07ece2596b5e3de9804966a949ebebb1573821b
MD5 c7a9672e0c9d407de8746c043cfd58c6
BLAKE2b-256 2d7a793148da5fae81fa922fa25fa8d59ba11f9bc3a4befa51b6effdf4ca8096

See more details on using hashes here.

File details

Details for the file pymatgen-2023.9.25-cp310-cp310-win32.whl.

File metadata

File hashes

Hashes for pymatgen-2023.9.25-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 67f7f8515f15df865efdc00b1a6ba3d6e1cdce21f3ae1194f2d4f5335acdae51
MD5 26defdea29a415496fbc8f6244ee482d
BLAKE2b-256 5692ecd1a35a022f3ed1c6b2c175aa6a58721a448e8b6273c460cb6c83bc1cbe

See more details on using hashes here.

File details

Details for the file pymatgen-2023.9.25-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pymatgen-2023.9.25-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c6658d82056dce751f0789839869fb2fc115e17ed8acd94ec75ef7280bccc040
MD5 58ad73df437f4363887ee0e7efc012d5
BLAKE2b-256 d9e0c9957e3c2effa775b2b654ba5ec9c729fe0c7c2efaacfd1ef412f3dd8c45

See more details on using hashes here.

File details

Details for the file pymatgen-2023.9.25-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pymatgen-2023.9.25-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 56d5ed3a68b1e0fdbc2f62d3c37a4349a5b59de2e65e6d17b76f84916c011fb8
MD5 f3cf759ffe11cb14e101ffa469067b28
BLAKE2b-256 2d99f8756e138e1f6a6be257f02634854f8d09b19fe38c45bac38c1916a78dd8

See more details on using hashes here.

File details

Details for the file pymatgen-2023.9.25-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pymatgen-2023.9.25-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 afbbe34a095275afcd75f75fe012b0fa28e638015fbe259e71de03d91f228362
MD5 850395fdefcbd833c6d75f809c4a4a96
BLAKE2b-256 5060d6d6e0c69aa5efccabe02b78167a60578e0cf2b92f7a5188dd2fe2f5aff9

See more details on using hashes here.

File details

Details for the file pymatgen-2023.9.25-cp39-cp39-win32.whl.

File metadata

  • Download URL: pymatgen-2023.9.25-cp39-cp39-win32.whl
  • Upload date:
  • Size: 7.3 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for pymatgen-2023.9.25-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 d4eabdf6f758c69b98549343c34c1315d372e8f63386b69650ac1ffad6ac4a49
MD5 cc470bf07fea649387aa539ce5233264
BLAKE2b-256 dc70086be4001d9544a0fd4690d18001c4539ab645ac8a691e53804276f17f9f

See more details on using hashes here.

File details

Details for the file pymatgen-2023.9.25-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pymatgen-2023.9.25-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b60103d360e324c73415888f5864e6e93be105899117d486998b7cbc89a6aa77
MD5 968370f9467fdbee1710ceba4ce547f2
BLAKE2b-256 1d2af60f0597c260e898e4d87c20160f603f539813d73a504f65f194c6b0fc99

See more details on using hashes here.

File details

Details for the file pymatgen-2023.9.25-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pymatgen-2023.9.25-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4ce171969bec91e3cc05d937ac5d0a4673b66ce945596de0c9f21349c45bf34c
MD5 7a686d167e90deb030914f8183a9b796
BLAKE2b-256 2e5e75d2b2e7907f9c2c9913f57cbccb4c4609976983ee2b317d81d6dcdb5d58

See more details on using hashes here.

File details

Details for the file pymatgen-2023.9.25-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pymatgen-2023.9.25-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2f82886691301f594fac0e6d101fce3a5d90f6004292cc99e3dc84b0036ba3b0
MD5 8395a752cdeca049b01a53e054a648fb
BLAKE2b-256 9cee2fe6df84afed4d5286232d761c5835f84f96844f0cb89aa55e4add37f174

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page