Skip to main content

Python Materials Genomics is a robust materials analysis code that defines core object representations for structures and molecules with support for many electronic structure codes. It is currently the core analysis code powering the Materials Project (https://materialsproject.org).

Project description

Logo

CI Status codecov PyPI Downloads Conda Downloads Requires Python 3.9+ Paper

Pymatgen (Python Materials Genomics) is a robust, open-source Python library for materials analysis. These are some of the main features:

  1. Highly flexible classes for the representation of Element, Site, Molecule and Structure objects.
  2. Extensive input/output support, including support for VASP, ABINIT, CIF, Gaussian, XYZ, and many other file formats.
  3. Powerful analysis tools, including generation of phase diagrams, Pourbaix diagrams, diffusion analyses, reactions, etc.
  4. Electronic structure analyses, such as density of states and band structure.
  5. Integration with the Materials Project REST API.

Pymatgen is free to use. However, we also welcome your help to improve this library by making your contributions. These contributions can be in the form of additional tools or modules you develop, or feature requests and bug reports. The following are resources for pymatgen:

Why use pymatgen?

  1. It is (fairly) robust. Pymatgen is used by thousands of researchers and is the analysis code powering the Materials Project. The analysis it produces survives rigorous scrutiny every single day. Bugs tend to be found and corrected quickly. Pymatgen also uses Github Actions for continuous integration, which ensures that every new code passes a comprehensive suite of unit tests.
  2. It is well documented. A fairly comprehensive documentation has been written to help you get to grips with it quickly.
  3. It is open. You are free to use and contribute to pymatgen. It also means that pymatgen is continuously being improved. We will attribute any code you contribute to any publication you specify. Contributing to pymatgen means your research becomes more visible, which translates to greater impact.
  4. It is fast. Many of the core numerical methods in pymatgen have been optimized by vectorizing in numpy/scipy. This means that coordinate manipulations are fast. Pymatgen also comes with a complete system for handling periodic boundary conditions.
  5. It will be around. Pymatgen is not a pet research project. It is used in the well-established Materials Project. It is also actively being developed and maintained by the Materials Virtual Lab, the ABINIT group and many other research groups.
  6. A growing ecosystem of developers and add-ons. Pymatgen has contributions from materials scientists all over the world. We also now have an architecture to support add-ons that expand pymatgen's functionality even further. Check out the contributing page and add-ons page for details and examples.

Installation

The version at the Python Package Index PyPI is always the latest stable release that is relatively bug-free and can be installed via pip:

pip install pymatgen

If you'd like to use the latest unreleased changes on the main branch, you can install directly from GitHub:

pip install -U git+https://github.com/materialsproject/pymatgen

The minimum Python version is 3.9. Some extra functionality (e.g., generation of POTCARs) does require additional setup (see the pymatgen docs).

Change Log

See GitHub releases, docs/CHANGES.md or commit history in increasing order of details.

Using pymatgen

Please refer to the official pymatgen docs for tutorials and examples.

How to cite pymatgen

If you use pymatgen in your research, please consider citing the following work:

Shyue Ping Ong, William Davidson Richards, Anubhav Jain, Geoffroy Hautier, Michael Kocher, Shreyas Cholia, Dan Gunter, Vincent Chevrier, Kristin A. Persson, Gerbrand Ceder. Python Materials Genomics (pymatgen): A Robust, Open-Source Python Library for Materials Analysis. Computational Materials Science, 2013, 68, 314-319. doi:10.1016/j.commatsci.2012.10.028

In addition, some of pymatgen's functionality is based on scientific advances/principles developed by the computational materials scientists in our team. Please refer to the pymatgen docs on how to cite them.

Soliciting contributions to 2nd pymatgen paper

If you are a long-standing pymatgen contributor and would like to be involved in working on an updated pymatgen publication, please fill out this co-author registration form or contact @shyuep, @mkhorton and @janosh with questions.

License

Pymatgen is released under the MIT License. The terms of the license are as follows:

The MIT License (MIT) Copyright (c) 2011-2012 MIT & LBNL

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

About the Pymatgen Development Team

Shyue Ping Ong (@shyuep) of the Materials Virtual Lab started Pymatgen in 2011 and is still the project lead. Janosh Riebesell (@janosh) and Matthew Horton (@mkhorton) are co-maintainers.

The pymatgen development team is the set of all contributors to the pymatgen project, including all subprojects.

Our Copyright Policy

Pymatgen uses a shared copyright model. Each contributor maintains copyright over their contributions to pymatgen. But, it is important to note that these contributions are typically only changes to the repositories. Thus, the pymatgen source code, in its entirety is not the copyright of any single person or institution. Instead, it is the collective copyright of the entire pymatgen Development Team. If individual contributors want to maintain a record of what changes/contributions they have specific copyright on, they should indicate their copyright in the commit message of the change, when they commit the change to one of the pymatgen repositories.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pymatgen-2024.2.20.tar.gz (7.2 MB view details)

Uploaded Source

Built Distributions

pymatgen-2024.2.20-cp311-cp311-win_amd64.whl (7.7 MB view details)

Uploaded CPython 3.11 Windows x86-64

pymatgen-2024.2.20-cp311-cp311-win32.whl (7.7 MB view details)

Uploaded CPython 3.11 Windows x86

pymatgen-2024.2.20-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.1 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pymatgen-2024.2.20-cp311-cp311-macosx_11_0_arm64.whl (7.7 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pymatgen-2024.2.20-cp310-cp310-win_amd64.whl (7.7 MB view details)

Uploaded CPython 3.10 Windows x86-64

pymatgen-2024.2.20-cp310-cp310-win32.whl (7.7 MB view details)

Uploaded CPython 3.10 Windows x86

pymatgen-2024.2.20-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pymatgen-2024.2.20-cp310-cp310-macosx_11_0_arm64.whl (7.7 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pymatgen-2024.2.20-cp39-cp39-win_amd64.whl (7.7 MB view details)

Uploaded CPython 3.9 Windows x86-64

pymatgen-2024.2.20-cp39-cp39-win32.whl (7.7 MB view details)

Uploaded CPython 3.9 Windows x86

pymatgen-2024.2.20-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pymatgen-2024.2.20-cp39-cp39-macosx_11_0_arm64.whl (7.7 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

File details

Details for the file pymatgen-2024.2.20.tar.gz.

File metadata

  • Download URL: pymatgen-2024.2.20.tar.gz
  • Upload date:
  • Size: 7.2 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for pymatgen-2024.2.20.tar.gz
Algorithm Hash digest
SHA256 76645ade67f00a60fa14f954a191716bb3021b7482d8d76ca4407d2b051a22d4
MD5 b3daab31a38776cc0f37447f300e98a2
BLAKE2b-256 dff0a2c60b88bc8c28a385f9b74310c236b39f0a9d51a1508a99d01abead75d1

See more details on using hashes here.

File details

Details for the file pymatgen-2024.2.20-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pymatgen-2024.2.20-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 878792a93cd8706a7cafceb0601ca989cd5ce2de9036597a100d3b342c818588
MD5 eb529f8f021495d8de76ab329275ef15
BLAKE2b-256 a88bfacacbcf9cb213230360077c73378c9763f210676d51577f69622e7b63bd

See more details on using hashes here.

File details

Details for the file pymatgen-2024.2.20-cp311-cp311-win32.whl.

File metadata

File hashes

Hashes for pymatgen-2024.2.20-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 2588ce385f9ca378295a86f06ba90ded81b4c1d6a7fc74a970e708ba9d65cadf
MD5 dcdee10ec6b3ec12361572338581596d
BLAKE2b-256 4f5b5d11be6ea711fb22046999a3f9184cb67b3829b4a7c6ec15bad56403e685

See more details on using hashes here.

File details

Details for the file pymatgen-2024.2.20-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pymatgen-2024.2.20-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6bfc6a20c00465440985c230475bd6b295721667f7bfe21e6cd70a5e5c3bcb01
MD5 a5e3890d0275affef50da9a5c3894786
BLAKE2b-256 723f2f0c88a7e675b2a35233bbfb8a31ea765b91517568b22252da7f9a741cdd

See more details on using hashes here.

File details

Details for the file pymatgen-2024.2.20-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pymatgen-2024.2.20-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 7bbd54c4e05dee2639745c8e4ece3d96f2c53869693e2f38d9800349717bc0e1
MD5 8694981fa50a03efa49283440e71e865
BLAKE2b-256 70f84f05b6df99fcff6b82ab467fe1e5afa35b026db8fae9fca5026bc04566e0

See more details on using hashes here.

File details

Details for the file pymatgen-2024.2.20-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pymatgen-2024.2.20-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 a02995a2541e8ff036138c652ebe92a607cf7d50e92580a99ed7d0442eff9fff
MD5 2285508e3f2d4753cb856e6366f084b8
BLAKE2b-256 fd92b7572e1a8fa7c77fc95ece342cf6fa7326f2000543009a0d18fb16adfe46

See more details on using hashes here.

File details

Details for the file pymatgen-2024.2.20-cp310-cp310-win32.whl.

File metadata

File hashes

Hashes for pymatgen-2024.2.20-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 d95768686299f836e78f2feb4e6bc173d0af40ef87bf8620892839bb73364f85
MD5 eee945d40550a06110302214ab8f9c75
BLAKE2b-256 bc2e1e54cf9842d1afd37636baf6202d0f60e440f9375587532ffc2ec28498f7

See more details on using hashes here.

File details

Details for the file pymatgen-2024.2.20-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pymatgen-2024.2.20-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c6b0f21aff07507e1cf1c65dc434fe5474f35be8e9c5e564e7b23ba495b83ac9
MD5 aa291868a286466be3fcef02539a20cc
BLAKE2b-256 9a83412f830ce6837355d3b2c28c8f994881fff5c510480384b2550094b382f0

See more details on using hashes here.

File details

Details for the file pymatgen-2024.2.20-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pymatgen-2024.2.20-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3b902448fa03c8828ad8b6dc5bd2793772797045a46511ff0cd5a9d5a06fa956
MD5 8e54757976affbcda1de7cb25e55ea96
BLAKE2b-256 25b46164934b700937efc306985e92d17921a931e53ca9834560cf351b12ed17

See more details on using hashes here.

File details

Details for the file pymatgen-2024.2.20-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pymatgen-2024.2.20-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 087371dc754bbabb92aa6ab3b641e83bd6d7232864c3007cfa7183aeb7a37bca
MD5 4040cb263e686729a30055ccf2bb4bc1
BLAKE2b-256 b444257ec56ac91570981870c67eed614e997c868534289af1147ea52219deee

See more details on using hashes here.

File details

Details for the file pymatgen-2024.2.20-cp39-cp39-win32.whl.

File metadata

  • Download URL: pymatgen-2024.2.20-cp39-cp39-win32.whl
  • Upload date:
  • Size: 7.7 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for pymatgen-2024.2.20-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 1d7d72976791129305f5c7d8b00e77671ff1f01100c2d8e3cda8f9dc98fe44f2
MD5 98f9db9fa6b26bec1fd95454f1377d5e
BLAKE2b-256 2a2cb6c95b6a7d34c689e4b1f0f642f9e95c63fffd203bb8a4b7e571208b660c

See more details on using hashes here.

File details

Details for the file pymatgen-2024.2.20-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pymatgen-2024.2.20-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2fcb7708356de83925052902389e272ec9d1aa7d304267d1dd96e048dbaf87d0
MD5 d738be702f72b1c6bafd0d2472c5d3a6
BLAKE2b-256 3fbe0be4cfa3a308e9e675f012cc0dc5c553f5bcb34150f8d6272d4c26e05959

See more details on using hashes here.

File details

Details for the file pymatgen-2024.2.20-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pymatgen-2024.2.20-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e6b13262513b5f681c7030d223f9e4243dd09270c74d46480c55f133c57356b1
MD5 a142fb129a70973cf5e7788f333efe5a
BLAKE2b-256 9228f87ad9214d666c03c6f5820a40d6a0c13049b809bf068a88ee3c3b89be92

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page