Skip to main content

Python Materials Genomics is a robust materials analysis code that defines core object representations for structures and molecules with support for many electronic structure codes. It is currently the core analysis code powering the Materials Project (https://materialsproject.org).

Project description

Logo

CI Status codecov PyPI Downloads Conda Downloads Requires Python 3.9+ Paper

Pymatgen (Python Materials Genomics) is a robust, open-source Python library for materials analysis. These are some of the main features:

  1. Highly flexible classes for the representation of Element, Site, Molecule and Structure objects.
  2. Extensive input/output support, including support for VASP, ABINIT, CIF, Gaussian, XYZ, and many other file formats.
  3. Powerful analysis tools, including generation of phase diagrams, Pourbaix diagrams, diffusion analyses, reactions, etc.
  4. Electronic structure analyses, such as density of states and band structure.
  5. Integration with the Materials Project REST API.

Pymatgen is free to use. However, we also welcome your help to improve this library by making your contributions. These contributions can be in the form of additional tools or modules you develop, or feature requests and bug reports. The following are resources for pymatgen:

Why use pymatgen?

  1. It is (fairly) robust. Pymatgen is used by thousands of researchers and is the analysis code powering the Materials Project. The analysis it produces survives rigorous scrutiny every single day. Bugs tend to be found and corrected quickly. Pymatgen also uses Github Actions for continuous integration, which ensures that every new code passes a comprehensive suite of unit tests.
  2. It is well documented. A fairly comprehensive documentation has been written to help you get to grips with it quickly.
  3. It is open. You are free to use and contribute to pymatgen. It also means that pymatgen is continuously being improved. We will attribute any code you contribute to any publication you specify. Contributing to pymatgen means your research becomes more visible, which translates to greater impact.
  4. It is fast. Many of the core numerical methods in pymatgen have been optimized by vectorizing in numpy/scipy. This means that coordinate manipulations are fast. Pymatgen also comes with a complete system for handling periodic boundary conditions.
  5. It will be around. Pymatgen is not a pet research project. It is used in the well-established Materials Project. It is also actively being developed and maintained by the Materials Virtual Lab, the ABINIT group and many other research groups.
  6. A growing ecosystem of developers and add-ons. Pymatgen has contributions from materials scientists all over the world. We also now have an architecture to support add-ons that expand pymatgen's functionality even further. Check out the contributing page and add-ons page for details and examples.

Installation

The version at the Python Package Index PyPI is always the latest stable release that is relatively bug-free and can be installed via pip:

pip install pymatgen

If you'd like to use the latest unreleased changes on the main branch, you can install directly from GitHub:

pip install -U git+https://github.com/materialsproject/pymatgen

The minimum Python version is 3.9. Some extra functionality (e.g., generation of POTCARs) does require additional setup (see the pymatgen docs).

Change Log

See GitHub releases, docs/CHANGES.md or commit history in increasing order of details.

Using pymatgen

Please refer to the official pymatgen docs for tutorials and examples.

How to cite pymatgen

If you use pymatgen in your research, please consider citing the following work:

Shyue Ping Ong, William Davidson Richards, Anubhav Jain, Geoffroy Hautier, Michael Kocher, Shreyas Cholia, Dan Gunter, Vincent Chevrier, Kristin A. Persson, Gerbrand Ceder. Python Materials Genomics (pymatgen): A Robust, Open-Source Python Library for Materials Analysis. Computational Materials Science, 2013, 68, 314-319. doi:10.1016/j.commatsci.2012.10.028

In addition, some of pymatgen's functionality is based on scientific advances/principles developed by the computational materials scientists in our team. Please refer to the pymatgen docs on how to cite them.

Soliciting contributions to 2nd pymatgen paper

If you are a long-standing pymatgen contributor and would like to be involved in working on an updated pymatgen publication, please fill out this co-author registration form or contact @shyuep, @mkhorton and @janosh with questions.

License

Pymatgen is released under the MIT License. The terms of the license are as follows:

The MIT License (MIT) Copyright (c) 2011-2012 MIT & LBNL

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

About the Pymatgen Development Team

Shyue Ping Ong (@shyuep) of the Materials Virtual Lab started Pymatgen in 2011 and is still the project lead. Janosh Riebesell (@janosh) and Matthew Horton (@mkhorton) are co-maintainers.

The pymatgen development team is the set of all contributors to the pymatgen project, including all subprojects.

Our Copyright Policy

Pymatgen uses a shared copyright model. Each contributor maintains copyright over their contributions to pymatgen. But, it is important to note that these contributions are typically only changes to the repositories. Thus, the pymatgen source code, in its entirety is not the copyright of any single person or institution. Instead, it is the collective copyright of the entire pymatgen Development Team. If individual contributors want to maintain a record of what changes/contributions they have specific copyright on, they should indicate their copyright in the commit message of the change, when they commit the change to one of the pymatgen repositories.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pymatgen-2024.2.8.tar.gz (7.2 MB view details)

Uploaded Source

Built Distributions

pymatgen-2024.2.8-cp311-cp311-win_amd64.whl (7.7 MB view details)

Uploaded CPython 3.11 Windows x86-64

pymatgen-2024.2.8-cp311-cp311-win32.whl (7.7 MB view details)

Uploaded CPython 3.11 Windows x86

pymatgen-2024.2.8-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.1 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pymatgen-2024.2.8-cp311-cp311-macosx_11_0_arm64.whl (7.7 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pymatgen-2024.2.8-cp310-cp310-win_amd64.whl (7.7 MB view details)

Uploaded CPython 3.10 Windows x86-64

pymatgen-2024.2.8-cp310-cp310-win32.whl (7.7 MB view details)

Uploaded CPython 3.10 Windows x86

pymatgen-2024.2.8-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pymatgen-2024.2.8-cp310-cp310-macosx_11_0_arm64.whl (7.7 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pymatgen-2024.2.8-cp39-cp39-win_amd64.whl (7.7 MB view details)

Uploaded CPython 3.9 Windows x86-64

pymatgen-2024.2.8-cp39-cp39-win32.whl (7.7 MB view details)

Uploaded CPython 3.9 Windows x86

pymatgen-2024.2.8-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pymatgen-2024.2.8-cp39-cp39-macosx_11_0_arm64.whl (7.7 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

File details

Details for the file pymatgen-2024.2.8.tar.gz.

File metadata

  • Download URL: pymatgen-2024.2.8.tar.gz
  • Upload date:
  • Size: 7.2 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for pymatgen-2024.2.8.tar.gz
Algorithm Hash digest
SHA256 1ed429c6c5eff9f0156a921ca9f8513623c37665d23a4bc882dd11cd88ff1bec
MD5 ddd3f4c3d2e137cb3fb4c919290dc82a
BLAKE2b-256 100d008bfb60f9ec80fa3c749dec7b800bbbfcc7a869a4cb37b1b905e6ff2660

See more details on using hashes here.

File details

Details for the file pymatgen-2024.2.8-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pymatgen-2024.2.8-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 30cb5f3ea7d4ca3b7efd91e309e5708824370d6f26dc161b9fe429c33fe9f370
MD5 f4a2c1f59bc13de04a3f2e2e32a6a342
BLAKE2b-256 f0a217a329dfc86dfbd4bca31b030b2071e62af6e8acfdd758eb5978162451cd

See more details on using hashes here.

File details

Details for the file pymatgen-2024.2.8-cp311-cp311-win32.whl.

File metadata

  • Download URL: pymatgen-2024.2.8-cp311-cp311-win32.whl
  • Upload date:
  • Size: 7.7 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for pymatgen-2024.2.8-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 2eb8103c2452c9e7abf915c41ea27dec2eb9c27cd28746909e7f88ca2edeb464
MD5 afc4cab1ce5f9240c97eb97396af90a4
BLAKE2b-256 94507b0322bec89f73e5247ce04a46ab0a82c53f17b8aabae3dc010b975d3438

See more details on using hashes here.

File details

Details for the file pymatgen-2024.2.8-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pymatgen-2024.2.8-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 108af55ee1c6205ef21feb3174a21d3322f477629baf2cf3caa8bec22c5ab6c3
MD5 e5e854d86bd25991f50b5563c2dde282
BLAKE2b-256 49d10ac32616628564236d0f5e323a194d5a2c8d2ea36da02e2259fcf9a5fb10

See more details on using hashes here.

File details

Details for the file pymatgen-2024.2.8-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pymatgen-2024.2.8-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f0c6b51239e1539e7bdbe1712fe833e44d0fe9e3b110786002425168612fd458
MD5 42916d644028513926ddb4d026f73318
BLAKE2b-256 8ee8dd716e2073f7d62cd0ddd8a99be037eeb7818d63b890cc0a6aae223f9e53

See more details on using hashes here.

File details

Details for the file pymatgen-2024.2.8-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pymatgen-2024.2.8-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 10d4d4b1de53c48dde503d6b2cd2960b9362340b3a7fb10bea4fd14fce0e4dbd
MD5 b8cb40cb789ef1664750bb4c83a8174e
BLAKE2b-256 6f73db4e18b55612e6ad41d4fa78fabba58e3350e9dd5f2ed49eebf8efeb1191

See more details on using hashes here.

File details

Details for the file pymatgen-2024.2.8-cp310-cp310-win32.whl.

File metadata

  • Download URL: pymatgen-2024.2.8-cp310-cp310-win32.whl
  • Upload date:
  • Size: 7.7 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for pymatgen-2024.2.8-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 ae9595d0ffbde6fc86947a8f2f8481f95efde1182b72a4ed5571c39764c223e2
MD5 6b5533bcb6fcb6117206c4d1d3a09c1c
BLAKE2b-256 5033db41358007c62b5837a8ac3c67d59f78e3b24790196897e7ec8fa4cf77f1

See more details on using hashes here.

File details

Details for the file pymatgen-2024.2.8-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pymatgen-2024.2.8-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0b40998f109d06489ae8957311c6a3f220d1c1d4ac2e83de0e2d5c03d79c14cd
MD5 9e83f65fbaef95b274b7b722dbf049de
BLAKE2b-256 7bda7b472efaff92325fca2ff95c2c3895b6d6ae49d301053bcf6feb4fae9957

See more details on using hashes here.

File details

Details for the file pymatgen-2024.2.8-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pymatgen-2024.2.8-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b5b12c5baaf427bec595d71b92fb6f1d06f296df98f64aa8f59f60abe4a86d5c
MD5 60853a0620e808384037a5602e840c4b
BLAKE2b-256 10e4542bc1987cc43e6960fc55f2c2d0a94f623f2fe8b01dc028313b49df42c3

See more details on using hashes here.

File details

Details for the file pymatgen-2024.2.8-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pymatgen-2024.2.8-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 e6060ff4220906238cb94ba20539d2a2a8469f9bd90c7b95f134bd8fa31394d7
MD5 7a9f46ad856ccc7294412a54e69ce25b
BLAKE2b-256 c85cb43b2d91368379cfe29826510a3dc973446f80fff15b3855b7d2eb737306

See more details on using hashes here.

File details

Details for the file pymatgen-2024.2.8-cp39-cp39-win32.whl.

File metadata

  • Download URL: pymatgen-2024.2.8-cp39-cp39-win32.whl
  • Upload date:
  • Size: 7.7 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for pymatgen-2024.2.8-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 adb48b8c0f93485cf1e327a7e1c613ec45714755a7ba623f496a9ed3313767e0
MD5 d4bf1decc19f0460f868f74aad9341a0
BLAKE2b-256 e24fc3e0470f767b0aa4302806fb31227b05fe0e8418b11bc4211e3918f5b772

See more details on using hashes here.

File details

Details for the file pymatgen-2024.2.8-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pymatgen-2024.2.8-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d684267fffd2354451e22ac4c231fc79502eb7e436e9db6647084b918ce61e04
MD5 c4d7a9e21dbbd71172c6c36669b6a97b
BLAKE2b-256 2ed9b5f1d75fad3d42d71d1607eca9b5f855f4e198b397cc9e7e79adbd7b0d1a

See more details on using hashes here.

File details

Details for the file pymatgen-2024.2.8-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pymatgen-2024.2.8-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 839466b76e51b0f98029c5a072fac0b1144a2881ac590b66daa12b8a8d54a822
MD5 9cd9bf0d34e43cc6c9606b4b1ac69628
BLAKE2b-256 834359ab0bd9e1be1bb7017abf4eb3dff25c524f160f7570e0bb696a3288b8b9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page