Skip to main content

Python Materials Genomics is a robust materials analysis code that defines core object representations for structures and molecules with support for many electronic structure codes. It is currently the core analysis code powering the Materials Project (https://materialsproject.org).

Project description

Logo

CI Status codecov PyPI Downloads Conda Downloads Requires Python 3.9+ Paper

Pymatgen (Python Materials Genomics) is a robust, open-source Python library for materials analysis. These are some of the main features:

  1. Highly flexible classes for the representation of Element, Site, Molecule and Structure objects.
  2. Extensive input/output support, including support for VASP, ABINIT, CIF, Gaussian, XYZ, and many other file formats.
  3. Powerful analysis tools, including generation of phase diagrams, Pourbaix diagrams, diffusion analyses, reactions, etc.
  4. Electronic structure analyses, such as density of states and band structure.
  5. Integration with the Materials Project REST API.

Pymatgen is free to use. However, we also welcome your help to improve this library by making your contributions. These contributions can be in the form of additional tools or modules you develop, or feature requests and bug reports. The following are resources for pymatgen:

Why use pymatgen?

  1. It is (fairly) robust. Pymatgen is used by thousands of researchers and is the analysis code powering the Materials Project. The analysis it produces survives rigorous scrutiny every single day. Bugs tend to be found and corrected quickly. Pymatgen also uses Github Actions for continuous integration, which ensures that every new code passes a comprehensive suite of unit tests.
  2. It is well documented. A fairly comprehensive documentation has been written to help you get to grips with it quickly.
  3. It is open. You are free to use and contribute to pymatgen. It also means that pymatgen is continuously being improved. We will attribute any code you contribute to any publication you specify. Contributing to pymatgen means your research becomes more visible, which translates to greater impact.
  4. It is fast. Many of the core numerical methods in pymatgen have been optimized by vectorizing in numpy/scipy. This means that coordinate manipulations are fast. Pymatgen also comes with a complete system for handling periodic boundary conditions.
  5. It will be around. Pymatgen is not a pet research project. It is used in the well-established Materials Project. It is also actively being developed and maintained by the Materials Virtual Lab, the ABINIT group and many other research groups.
  6. A growing ecosystem of developers and add-ons. Pymatgen has contributions from materials scientists all over the world. We also now have an architecture to support add-ons that expand pymatgen's functionality even further. Check out the contributing page and add-ons page for details and examples.

Installation

The version at the Python Package Index PyPI is always the latest stable release that is relatively bug-free and can be installed via pip:

pip install pymatgen

If you'd like to use the latest unreleased changes on the main branch, you can install directly from GitHub:

pip install -U git+https://github.com/materialsproject/pymatgen

The minimum Python version is 3.9. Some extra functionality (e.g., generation of POTCARs) does require additional setup (see the pymatgen docs).

Change Log

See GitHub releases, docs/CHANGES.md or commit history in increasing order of details.

Using pymatgen

Please refer to the official pymatgen docs for tutorials and examples.

How to cite pymatgen

If you use pymatgen in your research, please consider citing the following work:

Shyue Ping Ong, William Davidson Richards, Anubhav Jain, Geoffroy Hautier, Michael Kocher, Shreyas Cholia, Dan Gunter, Vincent Chevrier, Kristin A. Persson, Gerbrand Ceder. Python Materials Genomics (pymatgen): A Robust, Open-Source Python Library for Materials Analysis. Computational Materials Science, 2013, 68, 314-319. doi:10.1016/j.commatsci.2012.10.028

In addition, some of pymatgen's functionality is based on scientific advances/principles developed by the computational materials scientists in our team. Please refer to the pymatgen docs on how to cite them.

Soliciting contributions to 2nd pymatgen paper

If you are a long-standing pymatgen contributor and would like to be involved in working on an updated pymatgen publication, please fill out this co-author registration form or contact @shyuep, @mkhorton and @janosh with questions.

License

Pymatgen is released under the MIT License. The terms of the license are as follows:

The MIT License (MIT) Copyright (c) 2011-2012 MIT & LBNL

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

About the Pymatgen Development Team

Shyue Ping Ong (@shyuep) of the Materials Virtual Lab started Pymatgen in 2011 and is still the project lead. Janosh Riebesell (@janosh) and Matthew Horton (@mkhorton) are co-maintainers.

The pymatgen development team is the set of all contributors to the pymatgen project, including all subprojects.

Our Copyright Policy

Pymatgen uses a shared copyright model. Each contributor maintains copyright over their contributions to pymatgen. But, it is important to note that these contributions are typically only changes to the repositories. Thus, the pymatgen source code, in its entirety is not the copyright of any single person or institution. Instead, it is the collective copyright of the entire pymatgen Development Team. If individual contributors want to maintain a record of what changes/contributions they have specific copyright on, they should indicate their copyright in the commit message of the change, when they commit the change to one of the pymatgen repositories.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pymatgen-2024.6.10.tar.gz (3.0 MB view details)

Uploaded Source

Built Distributions

pymatgen-2024.6.10-cp312-cp312-win_amd64.whl (3.5 MB view details)

Uploaded CPython 3.12 Windows x86-64

pymatgen-2024.6.10-cp312-cp312-win32.whl (3.5 MB view details)

Uploaded CPython 3.12 Windows x86

pymatgen-2024.6.10-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.9 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

pymatgen-2024.6.10-cp312-cp312-macosx_11_0_arm64.whl (3.5 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

pymatgen-2024.6.10-cp311-cp311-win_amd64.whl (3.5 MB view details)

Uploaded CPython 3.11 Windows x86-64

pymatgen-2024.6.10-cp311-cp311-win32.whl (3.5 MB view details)

Uploaded CPython 3.11 Windows x86

pymatgen-2024.6.10-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pymatgen-2024.6.10-cp311-cp311-macosx_11_0_arm64.whl (3.5 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pymatgen-2024.6.10-cp310-cp310-win_amd64.whl (3.5 MB view details)

Uploaded CPython 3.10 Windows x86-64

pymatgen-2024.6.10-cp310-cp310-win32.whl (3.5 MB view details)

Uploaded CPython 3.10 Windows x86

pymatgen-2024.6.10-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pymatgen-2024.6.10-cp310-cp310-macosx_11_0_arm64.whl (3.5 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pymatgen-2024.6.10-cp39-cp39-win_amd64.whl (3.5 MB view details)

Uploaded CPython 3.9 Windows x86-64

pymatgen-2024.6.10-cp39-cp39-win32.whl (3.5 MB view details)

Uploaded CPython 3.9 Windows x86

pymatgen-2024.6.10-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pymatgen-2024.6.10-cp39-cp39-macosx_11_0_arm64.whl (3.5 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

File details

Details for the file pymatgen-2024.6.10.tar.gz.

File metadata

  • Download URL: pymatgen-2024.6.10.tar.gz
  • Upload date:
  • Size: 3.0 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.11.5

File hashes

Hashes for pymatgen-2024.6.10.tar.gz
Algorithm Hash digest
SHA256 7e5fa62851ecff7e41d6d1832ab24309978b74bd7278f9d57d40a26d26a5520f
MD5 dab8e3e63d10ab4b1e9a1144f201d33b
BLAKE2b-256 4410b040deee645c7a3a1bda6b0546f13dedf3151ccc123317ceeb4c510e49f8

See more details on using hashes here.

File details

Details for the file pymatgen-2024.6.10-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for pymatgen-2024.6.10-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 89dfc566ed96d90915e70ab19d36f8261fbc9ad9c8d1d008b8807fcdbd1368f0
MD5 1ceeae7ca2781822accc8bfa55115e4f
BLAKE2b-256 0bf55a46a2a653effcd3b5b9261f848b0b7ee8cfe8d4c3542aec47b19087bcc8

See more details on using hashes here.

File details

Details for the file pymatgen-2024.6.10-cp312-cp312-win32.whl.

File metadata

File hashes

Hashes for pymatgen-2024.6.10-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 9d8d4c15e68bc77b6079f6ca7808976b97fab17e0da59bccc291cf734fca9ff8
MD5 4288fab9902f9d3543bd8d8a7ec69dfb
BLAKE2b-256 b5e35f88338bc40c4c1b74a74694a18b0e8ed96671967006f0a73f1b5ff1e84f

See more details on using hashes here.

File details

Details for the file pymatgen-2024.6.10-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pymatgen-2024.6.10-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 289e9c266a414c22f633a268d7809bc85c101dcd2a254a7ccaa5e3cf945c83af
MD5 1b4ae4d1d252f833bd0e8ae11b8f1876
BLAKE2b-256 87b751286e3d8e8b060637ea299d89a42cb8048ae1c2f74147bf26c53095028a

See more details on using hashes here.

File details

Details for the file pymatgen-2024.6.10-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pymatgen-2024.6.10-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1e1025fb2c124956811301f1fb738a0d0036fb86ff288479201b921b4d184d6e
MD5 3d9902aec2f45485d2b1b46c5b521f66
BLAKE2b-256 e65e8670cf042eb189d4d79fac602ba835b200357ba5a4984dcccd09a96b3521

See more details on using hashes here.

File details

Details for the file pymatgen-2024.6.10-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pymatgen-2024.6.10-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 7a8b18fdd8b60a0bc47e776c35615eeb9062acc2c14e980c136408fd8c149fb8
MD5 82f915565c889837fb102e8e8fc02eb6
BLAKE2b-256 7c72676a79f0a22319181d17b57bda27f629e0aef64745c3ca83ec79c215dd71

See more details on using hashes here.

File details

Details for the file pymatgen-2024.6.10-cp311-cp311-win32.whl.

File metadata

File hashes

Hashes for pymatgen-2024.6.10-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 1b0a1d31b74a841980d24822515d778413572a600e768170aec13894ae386f49
MD5 38a8bcb1257099589cbd86f2023667f0
BLAKE2b-256 781be56e3d3d88f609f54447fcbfe3215ae7ec11383fe5ba10ff0ae5cb8d0a7a

See more details on using hashes here.

File details

Details for the file pymatgen-2024.6.10-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pymatgen-2024.6.10-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ac26557a761fa3192b71b9ca3c7aca0d956b5595cc1106d7597f52ddb6b4cead
MD5 d126d795b629ba494614b0f6076eeb4c
BLAKE2b-256 6627d6f6ee7b9f78579517ca891a0578873777c27973614878f321d6272954f6

See more details on using hashes here.

File details

Details for the file pymatgen-2024.6.10-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pymatgen-2024.6.10-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 375bd3c6acd7234a6947f8097f795501487e70d5f9c1dc5eb04d1d6cb6acd449
MD5 8329c898e638729b01094774a6fb62da
BLAKE2b-256 a3c8c7404b35c48f250460ecc1d0153fbba32717bb42276e52fcb3fd724645e8

See more details on using hashes here.

File details

Details for the file pymatgen-2024.6.10-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pymatgen-2024.6.10-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 af42a3a0217489cbf7aa5191e7c8dda2b7dd42ff5c84230ae60f530e1f7f8d26
MD5 23126720548b1e7015869904c49d67b6
BLAKE2b-256 a0de09e792a9398c44dfa6057bb936a2c6da05b74e5b5fb7b97228f3023460d9

See more details on using hashes here.

File details

Details for the file pymatgen-2024.6.10-cp310-cp310-win32.whl.

File metadata

File hashes

Hashes for pymatgen-2024.6.10-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 57337edd0d2568cee2892aabfff2e7a7f63414ea5b1a9ef95a77926ccac38fff
MD5 58bf8c823d49e92b99520a97c477e067
BLAKE2b-256 d082368a4bc6e1d5d6c2bc61dd8e56a274c4167f927594863c4936a01d245ae6

See more details on using hashes here.

File details

Details for the file pymatgen-2024.6.10-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pymatgen-2024.6.10-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1c3ad47c34e1cc543e00ba76613d689ce4ddb2f6e6214c88df58ead245f68f6f
MD5 e0219fd6c5c57f24ba2998ea2dbfab34
BLAKE2b-256 51a524ee7a0cead65313f061fc775c38e2498f1fe12282dc4cf2e11fb1e1d12a

See more details on using hashes here.

File details

Details for the file pymatgen-2024.6.10-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pymatgen-2024.6.10-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 141906ffe64b624e1add6e02dd62525a6b071f3f25d2392879047fa8ffa9f70e
MD5 5f8ae4143ef684a6cb360ea891789b68
BLAKE2b-256 78c843db4e04848099bcb38e63462a55fe7ca1100f71ca13de5a511269db5f22

See more details on using hashes here.

File details

Details for the file pymatgen-2024.6.10-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pymatgen-2024.6.10-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 cd75c6c8268cd24687df0c84d2589f402ddfe7c5cd44fceb0b85ce717ae05d4e
MD5 6b331879d117ea392e76d56e85739070
BLAKE2b-256 0055f5c785d8d237e391dd7808168f6f5d7b5749757607ab9f8e40b27025a2ab

See more details on using hashes here.

File details

Details for the file pymatgen-2024.6.10-cp39-cp39-win32.whl.

File metadata

  • Download URL: pymatgen-2024.6.10-cp39-cp39-win32.whl
  • Upload date:
  • Size: 3.5 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.4

File hashes

Hashes for pymatgen-2024.6.10-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 72462288f806b20d0129b0e23ef5615d8b3fdf67df12414581b422d519e8461e
MD5 8687e8b159f909c951832b2518e02e67
BLAKE2b-256 59af519033c8df18b93b81c6f0738508e94c3b75c0ef1a2c6c37354a07be739a

See more details on using hashes here.

File details

Details for the file pymatgen-2024.6.10-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pymatgen-2024.6.10-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2d6273b684cc1e4590b131ed548fcadb89a23450808f65ab8e22a8cfc6e4d3a5
MD5 bf2616f5b5987f496421341b1f33bd37
BLAKE2b-256 981b69d07fb68779736718089a309fd5ed628e415751d7f260221b24f000c633

See more details on using hashes here.

File details

Details for the file pymatgen-2024.6.10-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pymatgen-2024.6.10-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 53b3d7149dc0f5ddfc869a920fa30be2ed20989194c040a12b2ae4ed0fc415e7
MD5 7b2f6a6dd622ba10dfc88c6668013685
BLAKE2b-256 09f1d0d53e2f3feffd6dcec9daeb2d1c626ffacbe5cba6086f1c1b86079219cc

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page