Skip to main content

Python Materials Genomics is a robust materials analysis code that defines core object representations for structures and molecules with support for many electronic structure codes. It is currently the core analysis code powering the Materials Project (https://materialsproject.org).

Project description

Logo

CI Status codecov PyPI Downloads Conda Downloads Requires Python 3.9+ Paper

Pymatgen (Python Materials Genomics) is a robust, open-source Python library for materials analysis. These are some of the main features:

  1. Highly flexible classes for the representation of Element, Site, Molecule and Structure objects.
  2. Extensive input/output support, including support for VASP, ABINIT, CIF, Gaussian, XYZ, and many other file formats.
  3. Powerful analysis tools, including generation of phase diagrams, Pourbaix diagrams, diffusion analyses, reactions, etc.
  4. Electronic structure analyses, such as density of states and band structure.
  5. Integration with the Materials Project REST API.

Pymatgen is free to use. However, we also welcome your help to improve this library by making your contributions. These contributions can be in the form of additional tools or modules you develop, or feature requests and bug reports. The following are resources for pymatgen:

Why use pymatgen?

  1. It is (fairly) robust. Pymatgen is used by thousands of researchers and is the analysis code powering the Materials Project. The analysis it produces survives rigorous scrutiny every single day. Bugs tend to be found and corrected quickly. Pymatgen also uses Github Actions for continuous integration, which ensures that every new code passes a comprehensive suite of unit tests.
  2. It is well documented. A fairly comprehensive documentation has been written to help you get to grips with it quickly.
  3. It is open. You are free to use and contribute to pymatgen. It also means that pymatgen is continuously being improved. We will attribute any code you contribute to any publication you specify. Contributing to pymatgen means your research becomes more visible, which translates to greater impact.
  4. It is fast. Many of the core numerical methods in pymatgen have been optimized by vectorizing in numpy/scipy. This means that coordinate manipulations are fast. Pymatgen also comes with a complete system for handling periodic boundary conditions.
  5. It will be around. Pymatgen is not a pet research project. It is used in the well-established Materials Project. It is also actively being developed and maintained by the Materials Virtual Lab, the ABINIT group and many other research groups.
  6. A growing ecosystem of developers and add-ons. Pymatgen has contributions from materials scientists all over the world. We also now have an architecture to support add-ons that expand pymatgen's functionality even further. Check out the contributing page and add-ons page for details and examples.

Installation

The version at the Python Package Index PyPI is always the latest stable release that is relatively bug-free and can be installed via pip:

pip install pymatgen

If you'd like to use the latest unreleased changes on the main branch, you can install directly from GitHub:

pip install -U git+https://github.com/materialsproject/pymatgen

The minimum Python version is 3.9. Some extra functionality (e.g., generation of POTCARs) does require additional setup (see the pymatgen docs).

Change Log

See GitHub releases, docs/CHANGES.md or commit history in increasing order of details.

Using pymatgen

Please refer to the official pymatgen docs for tutorials and examples.

How to cite pymatgen

If you use pymatgen in your research, please consider citing the following work:

Shyue Ping Ong, William Davidson Richards, Anubhav Jain, Geoffroy Hautier, Michael Kocher, Shreyas Cholia, Dan Gunter, Vincent Chevrier, Kristin A. Persson, Gerbrand Ceder. Python Materials Genomics (pymatgen): A Robust, Open-Source Python Library for Materials Analysis. Computational Materials Science, 2013, 68, 314-319. doi:10.1016/j.commatsci.2012.10.028

In addition, some of pymatgen's functionality is based on scientific advances/principles developed by the computational materials scientists in our team. Please refer to the pymatgen docs on how to cite them.

Soliciting contributions to 2nd pymatgen paper

If you are a long-standing pymatgen contributor and would like to be involved in working on an updated pymatgen publication, please fill out this co-author registration form or contact @shyuep, @mkhorton and @janosh with questions.

License

Pymatgen is released under the MIT License. The terms of the license are as follows:

The MIT License (MIT) Copyright (c) 2011-2012 MIT & LBNL

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

About the Pymatgen Development Team

Shyue Ping Ong (@shyuep) of the Materials Virtual Lab started Pymatgen in 2011 and is still the project lead. Janosh Riebesell (@janosh) and Matthew Horton (@mkhorton) are co-maintainers.

The pymatgen development team is the set of all contributors to the pymatgen project, including all subprojects.

Our Copyright Policy

Pymatgen uses a shared copyright model. Each contributor maintains copyright over their contributions to pymatgen. But, it is important to note that these contributions are typically only changes to the repositories. Thus, the pymatgen source code, in its entirety is not the copyright of any single person or institution. Instead, it is the collective copyright of the entire pymatgen Development Team. If individual contributors want to maintain a record of what changes/contributions they have specific copyright on, they should indicate their copyright in the commit message of the change, when they commit the change to one of the pymatgen repositories.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pymatgen-2024.6.4.tar.gz (3.0 MB view details)

Uploaded Source

Built Distributions

pymatgen-2024.6.4-cp312-cp312-win_amd64.whl (3.5 MB view details)

Uploaded CPython 3.12 Windows x86-64

pymatgen-2024.6.4-cp312-cp312-win32.whl (3.5 MB view details)

Uploaded CPython 3.12 Windows x86

pymatgen-2024.6.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.9 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

pymatgen-2024.6.4-cp312-cp312-macosx_11_0_arm64.whl (3.5 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

pymatgen-2024.6.4-cp311-cp311-win_amd64.whl (3.5 MB view details)

Uploaded CPython 3.11 Windows x86-64

pymatgen-2024.6.4-cp311-cp311-win32.whl (3.5 MB view details)

Uploaded CPython 3.11 Windows x86

pymatgen-2024.6.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pymatgen-2024.6.4-cp311-cp311-macosx_11_0_arm64.whl (3.5 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pymatgen-2024.6.4-cp310-cp310-win_amd64.whl (3.5 MB view details)

Uploaded CPython 3.10 Windows x86-64

pymatgen-2024.6.4-cp310-cp310-win32.whl (3.5 MB view details)

Uploaded CPython 3.10 Windows x86

pymatgen-2024.6.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pymatgen-2024.6.4-cp310-cp310-macosx_11_0_arm64.whl (3.5 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pymatgen-2024.6.4-cp39-cp39-win_amd64.whl (3.5 MB view details)

Uploaded CPython 3.9 Windows x86-64

pymatgen-2024.6.4-cp39-cp39-win32.whl (3.5 MB view details)

Uploaded CPython 3.9 Windows x86

pymatgen-2024.6.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pymatgen-2024.6.4-cp39-cp39-macosx_11_0_arm64.whl (3.5 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

File details

Details for the file pymatgen-2024.6.4.tar.gz.

File metadata

  • Download URL: pymatgen-2024.6.4.tar.gz
  • Upload date:
  • Size: 3.0 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for pymatgen-2024.6.4.tar.gz
Algorithm Hash digest
SHA256 012bf42b1c9ff2ace94ea47f48ab532c0e9c93b7748a025c662311e0e59552cb
MD5 323dd942783ac702004633888c7a1e80
BLAKE2b-256 9680db92643cd114705331644e4485dc93331c9a00c89b8022967ccbaf821835

See more details on using hashes here.

File details

Details for the file pymatgen-2024.6.4-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for pymatgen-2024.6.4-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 69eb43ef065bf007a08ca928238706cd3bf6818d800edbc5927b3cb55dff761e
MD5 715b69c8fef0fe21268c703f3783ca34
BLAKE2b-256 4c59b1da26d4fddd35161ec5176e89caf1bb8ad2e43a69271f4e0dc689dc29c5

See more details on using hashes here.

File details

Details for the file pymatgen-2024.6.4-cp312-cp312-win32.whl.

File metadata

  • Download URL: pymatgen-2024.6.4-cp312-cp312-win32.whl
  • Upload date:
  • Size: 3.5 MB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for pymatgen-2024.6.4-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 580822af4ed4504b8d988ed28b665fe4b97bd7336ba220f5f5740e153c0433c6
MD5 61604f48fbbfa1b1c1221e211f8666e7
BLAKE2b-256 1f805d39aa300afa924197624f399de8a0207edaca034476c040d737df66ff38

See more details on using hashes here.

File details

Details for the file pymatgen-2024.6.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pymatgen-2024.6.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 cb28cb53ed8694be57ec37f19a87a1b9124f5481c63e9230ae666f9ec0522d8c
MD5 528fa50abcd5c346b587c7b3ca362aec
BLAKE2b-256 ea1a83552b30b86df904826fbb9e21a90b706ef580b1c5c3605cd84642945844

See more details on using hashes here.

File details

Details for the file pymatgen-2024.6.4-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pymatgen-2024.6.4-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a5fb0866f824b6668b320cb4b6146843d760fe80f6fa8bb596cd06584fe10b59
MD5 76a00c92a625a2e9884dc2f920e08a33
BLAKE2b-256 a4e4f530c951ef433e4196e97849da4e2b26207b39c12afe4a3741202642937c

See more details on using hashes here.

File details

Details for the file pymatgen-2024.6.4-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pymatgen-2024.6.4-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 ee433cdeb93906fba881bbe79ff9f2ed9e3383bf876b28ecf181cd42561d64e7
MD5 0910303bf7398f8cbb20f756845835e2
BLAKE2b-256 100639711dd7f85c4d3c81ad015d4afe282c89a6aa9c1ca20aa31158bbd7e8ff

See more details on using hashes here.

File details

Details for the file pymatgen-2024.6.4-cp311-cp311-win32.whl.

File metadata

  • Download URL: pymatgen-2024.6.4-cp311-cp311-win32.whl
  • Upload date:
  • Size: 3.5 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for pymatgen-2024.6.4-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 9ec8c139dc1c801d336f476680d0ecae0459a77f1ba7f621cd0e085bc8739da1
MD5 43990c7c51c628a98fd32f353f153608
BLAKE2b-256 cada5354693f3da5166cb53e88a3398545551dc98bad652d4994494becc32c96

See more details on using hashes here.

File details

Details for the file pymatgen-2024.6.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pymatgen-2024.6.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b580e48c7d1cd5f012fe69eba1ec9923f7e413732979a493a1aa1d3c527bc03b
MD5 ac96480e65b3a7042a57d750c536e798
BLAKE2b-256 0fb2b7ff0110c3583d71713b2fa1b153c3b32b423339775fc132a2b3bdc01bea

See more details on using hashes here.

File details

Details for the file pymatgen-2024.6.4-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pymatgen-2024.6.4-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3e7d08bcdcbd9c10abfbb7ed18ec4fd3cfa759a07f259e077d102c5189864fa1
MD5 909d742ca79ad3798d54bf7d1ea77deb
BLAKE2b-256 69022cd8ce11cd4626c6e60d4009337ffc6d5f5b7f9c37bf93cdb86ba72ca31d

See more details on using hashes here.

File details

Details for the file pymatgen-2024.6.4-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pymatgen-2024.6.4-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 0ad7da790afca5945f2a4c731d3566d05957f57a8012df5bc6be40b5353555a9
MD5 26a7def21591ceba4dc2e7b2bddb2ba3
BLAKE2b-256 5e74c46352b027085ab50063157453b45f0d32896ef9c5c99b707bd83fe31aa8

See more details on using hashes here.

File details

Details for the file pymatgen-2024.6.4-cp310-cp310-win32.whl.

File metadata

  • Download URL: pymatgen-2024.6.4-cp310-cp310-win32.whl
  • Upload date:
  • Size: 3.5 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for pymatgen-2024.6.4-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 cb622fca7ee24eeb1d97249ca67e49c65645852dcdea3dbe4e7a4175c3fd8b0a
MD5 30d42b5e9a69d788831985c300ec8ad8
BLAKE2b-256 42c2bd753a9dde6aa00c94c23316313a2eb4ef8a18e2e35633b5d45d8887fde6

See more details on using hashes here.

File details

Details for the file pymatgen-2024.6.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pymatgen-2024.6.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 df4a867b16bba35a53af2a6cede2cb422ac75e962ddb9d302867db870ebd2283
MD5 ce321b2f56d12ccfd6ca134983e20657
BLAKE2b-256 d4ca850ec73ef9a00b6cde55e3d66dd81d39b5d45f714594a0901d590ed837da

See more details on using hashes here.

File details

Details for the file pymatgen-2024.6.4-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pymatgen-2024.6.4-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a2c332f8956b2d3092bfd2c15168d7d904697dbdf242ed3745d7fdfd326e84de
MD5 b2d26959cd7f5d794f7a6e523a74d4da
BLAKE2b-256 6a64aa6c4792f2b34d56a9ba0539d25f3d14822b9d3c9f5d8d7557705c42555b

See more details on using hashes here.

File details

Details for the file pymatgen-2024.6.4-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pymatgen-2024.6.4-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 5bd9c806fcdfb5429002c806dc8fff6db6ba7310a5ad62ad80e2adafb8c6f8af
MD5 792935cc25e514144b372afa83479641
BLAKE2b-256 527b9dda7fdeebf22264a673365b4b9abb71c4cc1942fde656aab4c9a5e3788b

See more details on using hashes here.

File details

Details for the file pymatgen-2024.6.4-cp39-cp39-win32.whl.

File metadata

  • Download URL: pymatgen-2024.6.4-cp39-cp39-win32.whl
  • Upload date:
  • Size: 3.5 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for pymatgen-2024.6.4-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 34d1270d058957594378aa063e8cab420f6a308792fc4811632f85caac54d14a
MD5 b82377af577ce6be686ab419ea25b6cb
BLAKE2b-256 14f4490b8687092ebeb574e8de9d08b7ee78474085da89090b58ad1daa4e6a22

See more details on using hashes here.

File details

Details for the file pymatgen-2024.6.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pymatgen-2024.6.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a5e8e7a9e8c51b4924cbf295d7e94f6890a9da1ed28cd66e3a4c00d7a4e3697d
MD5 b832e304e5a5dc45a2478c9f6e397dd5
BLAKE2b-256 9f914b97dd3296a98f3474db4e622ca68df01d3d87094c5c5d4c36a7dabf99ef

See more details on using hashes here.

File details

Details for the file pymatgen-2024.6.4-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pymatgen-2024.6.4-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 dda2a798c4857351bc7fe70fb071a73b826c475c0f80bfa977f193229f2a3c18
MD5 ad749d885b05db2230a2badd8476941a
BLAKE2b-256 98a80f67a4ddb4c14b8585c1d4e03ca6598bbd5e09357d15f4609eb068c2b179

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page