Skip to main content

Python Materials Genomics is a robust materials analysis code that defines core object representations for structures

Project description

Logo

CI Status codecov PyPI Downloads Conda Downloads Requires Python 3.9+ Paper

Pymatgen (Python Materials Genomics) is a robust, open-source Python library for materials analysis. These are some of the main features:

  1. Highly flexible classes for the representation of Element, Site, Molecule and Structure objects.
  2. Extensive input/output support, including support for VASP, ABINIT, CIF, Gaussian, XYZ, and many other file formats.
  3. Powerful analysis tools, including generation of phase diagrams, Pourbaix diagrams, diffusion analyses, reactions, etc.
  4. Electronic structure analyses, such as density of states and band structure.
  5. Integration with the Materials Project REST API.

Pymatgen is free to use. However, we also welcome your help to improve this library by making your contributions. These contributions can be in the form of additional tools or modules you develop, or feature requests and bug reports. The following are resources for pymatgen:

Why use pymatgen?

  1. It is (fairly) robust. Pymatgen is used by thousands of researchers and is the analysis code powering the Materials Project. The analysis it produces survives rigorous scrutiny every single day. Bugs tend to be found and corrected quickly. Pymatgen also uses Github Actions for continuous integration, which ensures that every new code passes a comprehensive suite of unit tests.
  2. It is well documented. A fairly comprehensive documentation has been written to help you get to grips with it quickly.
  3. It is open. You are free to use and contribute to pymatgen. It also means that pymatgen is continuously being improved. We will attribute any code you contribute to any publication you specify. Contributing to pymatgen means your research becomes more visible, which translates to greater impact.
  4. It is fast. Many of the core numerical methods in pymatgen have been optimized by vectorizing in numpy/scipy. This means that coordinate manipulations are fast. Pymatgen also comes with a complete system for handling periodic boundary conditions.
  5. It will be around. Pymatgen is not a pet research project. It is used in the well-established Materials Project. It is also actively being developed and maintained by the Materials Virtual Lab, the ABINIT group and many other research groups.
  6. A growing ecosystem of developers and add-ons. Pymatgen has contributions from materials scientists all over the world. We also now have an architecture to support add-ons that expand pymatgen's functionality even further. Check out the contributing page and add-ons page for details and examples.

Installation

The version at the Python Package Index PyPI is always the latest stable release that is relatively bug-free and can be installed via pip:

pip install pymatgen

If you'd like to use the latest unreleased changes on the main branch, you can install directly from GitHub:

pip install -U git+https://github.com/materialsproject/pymatgen

The minimum Python version is 3.9. Some extra functionality (e.g., generation of POTCARs) does require additional setup (see the pymatgen docs).

Change Log

See GitHub releases, docs/CHANGES.md or commit history in increasing order of details.

Using pymatgen

Please refer to the official pymatgen docs for tutorials and examples.

How to cite pymatgen

If you use pymatgen in your research, please consider citing the following work:

Shyue Ping Ong, William Davidson Richards, Anubhav Jain, Geoffroy Hautier, Michael Kocher, Shreyas Cholia, Dan Gunter, Vincent Chevrier, Kristin A. Persson, Gerbrand Ceder. Python Materials Genomics (pymatgen): A Robust, Open-Source Python Library for Materials Analysis. Computational Materials Science, 2013, 68, 314-319. doi:10.1016/j.commatsci.2012.10.028

In addition, some of pymatgen's functionality is based on scientific advances/principles developed by the computational materials scientists in our team. Please refer to the pymatgen docs on how to cite them.

Soliciting contributions to 2nd pymatgen paper

If you are a long-standing pymatgen contributor and would like to be involved in working on an updated pymatgen publication, please fill out this co-author registration form or contact @shyuep, @mkhorton and @janosh with questions.

License

Pymatgen is released under the MIT License. The terms of the license are as follows:

The MIT License (MIT) Copyright (c) 2011-2012 MIT & LBNL

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

About the Pymatgen Development Team

Shyue Ping Ong (@shyuep) of the Materials Virtual Lab started Pymatgen in 2011 and is still the project lead. Janosh Riebesell (@janosh) and Matthew Horton (@mkhorton) are co-maintainers.

The pymatgen development team is the set of all contributors to the pymatgen project, including all subprojects.

Our Copyright Policy

Pymatgen uses a shared copyright model. Each contributor maintains copyright over their contributions to pymatgen. But, it is important to note that these contributions are typically only changes to the repositories. Thus, the pymatgen source code, in its entirety is not the copyright of any single person or institution. Instead, it is the collective copyright of the entire pymatgen Development Team. If individual contributors want to maintain a record of what changes/contributions they have specific copyright on, they should indicate their copyright in the commit message of the change, when they commit the change to one of the pymatgen repositories.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pymatgen-2024.7.18.tar.gz (3.1 MB view details)

Uploaded Source

Built Distributions

pymatgen-2024.7.18-cp312-cp312-win_amd64.whl (3.6 MB view details)

Uploaded CPython 3.12 Windows x86-64

pymatgen-2024.7.18-cp312-cp312-win32.whl (3.5 MB view details)

Uploaded CPython 3.12 Windows x86

pymatgen-2024.7.18-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.0 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

pymatgen-2024.7.18-cp312-cp312-macosx_11_0_arm64.whl (3.6 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

pymatgen-2024.7.18-cp311-cp311-win_amd64.whl (3.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

pymatgen-2024.7.18-cp311-cp311-win32.whl (3.5 MB view details)

Uploaded CPython 3.11 Windows x86

pymatgen-2024.7.18-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.0 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pymatgen-2024.7.18-cp311-cp311-macosx_11_0_arm64.whl (3.6 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pymatgen-2024.7.18-cp310-cp310-win_amd64.whl (3.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

pymatgen-2024.7.18-cp310-cp310-win32.whl (3.5 MB view details)

Uploaded CPython 3.10 Windows x86

pymatgen-2024.7.18-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pymatgen-2024.7.18-cp310-cp310-macosx_11_0_arm64.whl (3.6 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pymatgen-2024.7.18-cp39-cp39-win_amd64.whl (3.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

pymatgen-2024.7.18-cp39-cp39-win32.whl (3.5 MB view details)

Uploaded CPython 3.9 Windows x86

pymatgen-2024.7.18-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pymatgen-2024.7.18-cp39-cp39-macosx_11_0_arm64.whl (3.6 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

File details

Details for the file pymatgen-2024.7.18.tar.gz.

File metadata

  • Download URL: pymatgen-2024.7.18.tar.gz
  • Upload date:
  • Size: 3.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.11.8

File hashes

Hashes for pymatgen-2024.7.18.tar.gz
Algorithm Hash digest
SHA256 914c171c0121da50e691da351ce157f906d1f5efc9c2d38f5e2b68839d50b8a6
MD5 e9a9718001bc358a5d2c058df540e944
BLAKE2b-256 cb645b923162cda4f5b024942d06fdaf73bbca401b5e759cb736d661e3a19c07

See more details on using hashes here.

File details

Details for the file pymatgen-2024.7.18-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for pymatgen-2024.7.18-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 86f2889ab3920858e038d16737fb2a49a8e76e4072f012ca45b56d00fe3646e3
MD5 7a2a09a1929d2da859db791943aa0b31
BLAKE2b-256 5c0cff2ef27160e48818fe95ce36b3eb35530b7d6a883edf43c1b8903db4d643

See more details on using hashes here.

File details

Details for the file pymatgen-2024.7.18-cp312-cp312-win32.whl.

File metadata

File hashes

Hashes for pymatgen-2024.7.18-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 31967ef5372a5443424a9b81d6626a6ca526834ed25869f59694d6c799317108
MD5 dcbb787b5a83f4dccb3344f8c2d59f7b
BLAKE2b-256 086d9384012274f5c874d464874058fc53389a92db564159890e790910532298

See more details on using hashes here.

File details

Details for the file pymatgen-2024.7.18-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pymatgen-2024.7.18-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6a70ee9c0fd4070a1c47911f04307246bfedc7b2dab8977298b4fe7d231600dd
MD5 abc5f9d353801f4523fdb2792a817eb2
BLAKE2b-256 0a8957d63f25c42c3f7111173ee984d9c1c96abbc2e74d42cfee3a75b311a17d

See more details on using hashes here.

File details

Details for the file pymatgen-2024.7.18-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pymatgen-2024.7.18-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c7b36273fa0f4347c005a72ecb2dc892af301afaec6c91e0f8934d8bc73409df
MD5 530e4f29dce5df0047810c13c0e6bf90
BLAKE2b-256 c80952f89fd6a29ccab6db8caf809029bba8c8e4b2705b31eac2a61bfdc6c921

See more details on using hashes here.

File details

Details for the file pymatgen-2024.7.18-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pymatgen-2024.7.18-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 33814b1deed22c2b60a92f18e0b36f399a427d9ade8ccb8885db9f4221fe97fa
MD5 f4124568d5dbb1cb58e7c6f225201fda
BLAKE2b-256 2a355c70b50841ba2cd62f4704850100183322901b11efc2d7e49fce176f4ed9

See more details on using hashes here.

File details

Details for the file pymatgen-2024.7.18-cp311-cp311-win32.whl.

File metadata

File hashes

Hashes for pymatgen-2024.7.18-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 78f93f0c3d4b3a9f4bad1530fc7247fcfb76990fcbb777dd96ad7827e6612e39
MD5 6596a9e8c2378e83411bdde73b2e09aa
BLAKE2b-256 374f4e27893c4415b99291d5525dd8eefac7e05ad0d43bf9d2bd64c9ffe3090a

See more details on using hashes here.

File details

Details for the file pymatgen-2024.7.18-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pymatgen-2024.7.18-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 029704ce711dd51945fc7fe7b66eb4aa1e44be24e68598051dbf812b9320f843
MD5 7b4f395f683c07c2b03f29a3fcbd80dc
BLAKE2b-256 6dcc5256937561a18987471e0b42283a747a29cd090876080cc5186b07b58c6f

See more details on using hashes here.

File details

Details for the file pymatgen-2024.7.18-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pymatgen-2024.7.18-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 170330701b81ced8aabeb6799699053d33cd415b3e0846b65b7317af2f3423a6
MD5 2d761397ffbb44ed59075b785ab22190
BLAKE2b-256 b5c5146c85c247698ea7236d4f72acf7a997d6dfc28e289753c203127fce1f67

See more details on using hashes here.

File details

Details for the file pymatgen-2024.7.18-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pymatgen-2024.7.18-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 e0a4dd47798666fa66284d35c3021b150d8796531ffa0913bf5befffb357d299
MD5 15036bf154e551e8a22a822096cd4b23
BLAKE2b-256 ddd8842f0734275487053c0d2e60c7ca25a85774567697fd835462a1129ec853

See more details on using hashes here.

File details

Details for the file pymatgen-2024.7.18-cp310-cp310-win32.whl.

File metadata

File hashes

Hashes for pymatgen-2024.7.18-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 8a52097356da7213d1ce9ecca89609132541a85bbb8ebba3bf3eb3e9a97e7b12
MD5 28de21848425370eba9cc1e6acfedc1b
BLAKE2b-256 be7caaa4e4ce59479d013789070f288db1b6c2a20548b8820330057f20553fdd

See more details on using hashes here.

File details

Details for the file pymatgen-2024.7.18-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pymatgen-2024.7.18-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e68c41c34d316ebe06a6ebc71c2fa805b1cb6a6643657a5fe91f4d1e4e912081
MD5 2a133923b1075aa6cc4b0404cc0d01f4
BLAKE2b-256 5439cb38c71e223dd526fbb80646682b3d54c083d8906330e165a547be63cfc0

See more details on using hashes here.

File details

Details for the file pymatgen-2024.7.18-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pymatgen-2024.7.18-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 44a3ede8dbd5adb6fecc97f2dc9e3493d1a6b76ac353cb7013038aa8b818df19
MD5 e0e4e1be5c5e5e443bce19e2f18d9281
BLAKE2b-256 06afd69e54dd4a48f8801a0182091b69b14d34850bcf02c95260c37aed33c7c7

See more details on using hashes here.

File details

Details for the file pymatgen-2024.7.18-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pymatgen-2024.7.18-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 c06e658b7a9ed4852a7c0e6296c606ab5c36c9ca9b3eba033fb34f093f4e2e50
MD5 4ab68160bc9c1a9ee760c6a8b8f04f84
BLAKE2b-256 c75a7e56986a32813033ac40739deda2b03f49cc64bd8252e5a29806c48ce6f9

See more details on using hashes here.

File details

Details for the file pymatgen-2024.7.18-cp39-cp39-win32.whl.

File metadata

  • Download URL: pymatgen-2024.7.18-cp39-cp39-win32.whl
  • Upload date:
  • Size: 3.5 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for pymatgen-2024.7.18-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 916fd371114e3ad081aeea36a57388db3e9410d9a3f3baa61ed0aaae0237fd3b
MD5 68b7666fd52c05e553ae1c83f5b690bf
BLAKE2b-256 f1cc65df4048b22168b4f126dc637d5186bb4dbf1702c8ce80a52eed2f7b1267

See more details on using hashes here.

File details

Details for the file pymatgen-2024.7.18-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pymatgen-2024.7.18-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 93b9d88eea04a2e2e30c2dde0ad34cc30e607de6e99ca11dbabbf9c35a8049e0
MD5 cf58dc170d05d5d5cb6646cc219da8c0
BLAKE2b-256 718711a17baf0ac7d9d49abdec82930819cb72273c15567eee1f8fbb1d45d03f

See more details on using hashes here.

File details

Details for the file pymatgen-2024.7.18-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pymatgen-2024.7.18-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1a89e4fdde3e24648334eb891dc60dfc2c9c031eda6dbebfa7708f28e3548a91
MD5 e3eaf850cf86e09cd7f8734a51d89277
BLAKE2b-256 6c548d3bc2885735d2a090e77eb37614361db76d5625fd5bb98c37df1a948325

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page