Skip to main content

A toolkit for visualizations in materials informatics

Project description

pymatviz

A toolkit for visualizations in materials informatics. Works with pymatgen.

Tests pre-commit.ci status This project supports Python 3.8+ PyPI PyPI Downloads

Installation

pip install pymatviz

Elements

See pymatviz/elements.py.

ptable_heatmap(compositions) ptable_heatmap(compositions, log=True)
ptable_heatmap ptable_heatmap_log
ptable_heatmap_ratio(comps_a, comps_b) ptable_heatmap_ratio(comps_b, comps_a, log=True)
ptable_heatmap_ratio ptable_heatmap_ratio_inverse
hist_elemental_prevalence(compositions) hist_elemental_prevalence(compositions, log=True, bar_values='count')
hist_elemental_prevalence hist_elemental_prevalence_log_count

Sunburst

See pymatviz/sunburst.py.

spacegroup_sunburst([65, 134, 225, ...]) spacegroup_sunburst([65, 134, 225, ...], show_values="percent")
spacegroup_sunburst spacegroup_sunburst_percent

Structure

See pymatviz/struct_vis.py.

plot_structure_2d(pmg_struct) plot_structure_2d(pmg_struct, show_unit_cell=False, site_labels=False)
struct-2d-mp-19017-disordered struct-2d-mp-12712

mp-structures-2d

Histograms

See pymatviz/histograms.py.

spacegroup_hist([65, 134, 225, ...]) spacegroup_hist([65, 134, 225, ...], show_counts=False)
spacegroup_hist spacegroup_hist_no_counts
residual_hist(y_true, y_pred) true_pred_hist(y_true, y_pred, y_std)
residual_hist true_pred_hist

Parity Plots

See pymatviz/parity.py.

density_scatter(xs, ys, ...) density_scatter_with_hist(xs, ys, ...)
density_scatter density_scatter_with_hist
density_hexbin(xs, ys, ...) density_hexbin_with_hist(xs, ys, ...)
density_hexbin density_hexbin_with_hist
scatter_with_err_bar(xs, ys, yerr, ...) residual_vs_actual(y_true, y_pred, ...)
scatter_with_err_bar residual_vs_actual

Uncertainty Calibration

See pymatviz/quantile.py.

qq_gaussian(y_true, y_pred, y_std) qq_gaussian(y_true, y_pred, y_std: dict)
normal_prob_plot normal_prob_plot_multiple

Ranking

See pymatviz/ranking.py.

err_decay(y_true, y_pred, y_std) err_decay(y_true, y_pred, y_std: dict)
err_decay err_decay_multiple

Cumulative Error and Residual

See pymatviz/cumulative.py.

cum_err(preds, targets) cum_res(preds, targets)
cumulative_error cumulative_residual

Classification Metrics

See pymatviz/relevance.py.

roc_curve(targets, proba_pos) precision_recall_curve(targets, proba_pos)
roc_curve precision_recall_curve

Correlation

See pymatviz/correlation.py.

marchenko_pastur(corr_mat, gamma=ncols/nrows) marchenko_pastur(corr_mat_significant_eval, gamma=ncols/nrows)
marchenko_pastur marchenko_pastur_significant_eval

Migrating from ml-matrics to pymatviz

This library was renamed from ml-matrics to pymatviz between versions 0.3.0 and 0.4.0. To update existing Python files that import ml-matrics in place, run the following commands. On Linux:

find . -name '*.py' | xargs sed -i 's/^from ml_matrics import/from pymatviz import/g'
find . -name '*.py' | xargs sed -i 's/^from ml_matrics./from pymatviz./g'
find . -name '*.py' | xargs sed -i 's/^import ml_matrics/import pymatviz/g'

On Mac, replace sed -i with sed -i "".

Glossary

  1. Residual y_res = y_true - y_pred: The difference between ground truth target and model prediction.
  2. Error y_err = abs(y_true - y_pred): Absolute error between target and model prediction.
  3. Uncertainty y_std: The model's estimate for its error, i.e. how much the model thinks its prediction can be trusted. (std for standard deviation.)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pymatviz-0.4.0.tar.gz (35.2 kB view details)

Uploaded Source

File details

Details for the file pymatviz-0.4.0.tar.gz.

File metadata

  • Download URL: pymatviz-0.4.0.tar.gz
  • Upload date:
  • Size: 35.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.8.12

File hashes

Hashes for pymatviz-0.4.0.tar.gz
Algorithm Hash digest
SHA256 3704dfb8d483f1df9fce5895828c964107cb7d140040c9a0cf3aba760d9b2fff
MD5 b10a0c96b9c4243c6501f6b445454e68
BLAKE2b-256 18d1eefecc276adf291b760b73fc37982c3ba01b15e7f6186ef3e603e4f512f3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page