Skip to main content

A toolkit for visualizations in materials informatics

Project description

pymatviz

A toolkit for visualizations in materials informatics.

Tests pre-commit.ci status This project supports Python 3.8+ PyPI PyPI Downloads

Note: This project is not associated with or endorsed by pymatgen, but aims to complement it by adding additional plotting functionality.

Installation

pip install pymatviz

Elements

See pymatviz/elements.py.

ptable_heatmap(compositions, log=True) ptable_heatmap_ratio(comps_a, comps_b)
ptable_heatmap ptable_heatmap_ratio

Sunburst

See pymatviz/sunburst.py.

spacegroup_sunburst([65, 134, 225, ...]) spacegroup_sunburst([65, 134, 225, ...], show_values="percent")
spacegroup_sunburst spacegroup_sunburst_percent

Structure

See pymatviz/struct_vis.py.

plot_structure_2d(pmg_struct) plot_structure_2d(pmg_struct, show_unit_cell=False, site_labels=False)
struct-2d-mp-19017-disordered struct-2d-mp-12712

mp-structures-2d

Histograms

See pymatviz/histograms.py.

spacegroup_hist([65, 134, 225, ...]) spacegroup_hist(["C2/m", "C2/m", "Fm-3m", ...])
spg_num_hist spg_symbol_hist
residual_hist(y_true, y_pred) hist_elemental_prevalence(compositions, log=True, bar_values='count')
residual_hist hist_elemental_prevalence

Parity Plots

See pymatviz/parity.py.

density_scatter(xs, ys, ...) density_scatter_with_hist(xs, ys, ...)
density_scatter density_scatter_with_hist
density_hexbin(xs, ys, ...) density_hexbin_with_hist(xs, ys, ...)
density_hexbin density_hexbin_with_hist
scatter_with_err_bar(xs, ys, yerr, ...) residual_vs_actual(y_true, y_pred, ...)
scatter_with_err_bar residual_vs_actual

Uncertainty Calibration

See pymatviz/quantile.py.

qq_gaussian(y_true, y_pred, y_std) qq_gaussian(y_true, y_pred, y_std: dict)
normal_prob_plot normal_prob_plot_multiple

Ranking

See pymatviz/ranking.py.

err_decay(y_true, y_pred, y_std) err_decay(y_true, y_pred, y_std: dict)
err_decay err_decay_multiple

Cumulative Error and Residual

See pymatviz/cumulative.py.

cum_err(preds, targets) cum_res(preds, targets)
cumulative_error cumulative_residual

Classification Metrics

See pymatviz/relevance.py.

roc_curve(targets, proba_pos) precision_recall_curve(targets, proba_pos)
roc_curve precision_recall_curve

Correlation

See pymatviz/correlation.py.

marchenko_pastur(corr_mat, gamma=ncols/nrows) marchenko_pastur(corr_mat_significant_eval, gamma=ncols/nrows)
marchenko_pastur marchenko_pastur_significant_eval

Migrating from ml-matrics to pymatviz

This library was renamed from ml-matrics to pymatviz between versions 0.3.0 and 0.4.0. To update existing Python files that import ml-matrics in place, run the following commands. On Linux:

find . -iname '*.py' -o -iname '*.ipynb' | xargs sed -i 's/from ml_matrics import/from pymatviz import/g'
find . -iname '*.py' -o -iname '*.ipynb' | xargs sed -i 's/from ml_matrics./from pymatviz./g'
find . -iname '*.py' -o -iname '*.ipynb' | xargs sed -i 's/import ml_matrics/import pymatviz/g'

On Mac, replace sed -i with sed -i "".

Glossary

  1. Residual y_res = y_true - y_pred: The difference between ground truth target and model prediction.
  2. Error y_err = abs(y_true - y_pred): Absolute error between target and model prediction.
  3. Uncertainty y_std: The model's estimate for its error, i.e. how much the model thinks its prediction can be trusted. (std for standard deviation.)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pymatviz-0.4.1.tar.gz (36.4 kB view details)

Uploaded Source

File details

Details for the file pymatviz-0.4.1.tar.gz.

File metadata

  • Download URL: pymatviz-0.4.1.tar.gz
  • Upload date:
  • Size: 36.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.9 tqdm/4.63.0 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.8.12

File hashes

Hashes for pymatviz-0.4.1.tar.gz
Algorithm Hash digest
SHA256 917198bbd24165d15fd8c36da6919fafec2749d6f737ab3c00b3666795c0482b
MD5 c6f31935919928c7f076e59e71e9846f
BLAKE2b-256 8af0f92fd9b4a2df937ae2cede2c8ab7d38dbddcafffbe5ac7b6015d9564ecc9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page