A toolkit for visualizations in materials informatics
Project description
pymatviz
A toolkit for visualizations in materials informatics.
Note: This project is not endorsed by pymatgen
, but aims to complement it with additional plotting functionality.
Installation
pip install pymatviz
API Docs
See the /api page.
Usage
See the Jupyter notebooks under examples/
for how to use pymatviz
.
matbench_dielectric_eda.ipynb | |||
mp_bimodal_e_form.ipynb | |||
matbench_perovskites_eda.ipynb | |||
mprester_ptable.ipynb |
Periodic Table
See pymatviz/ptable.py
. Heat maps of the periodic table can be plotted both with matplotlib
and plotly
. plotly
supports displaying additional data on hover or full interactivity through Dash.
ptable_heatmap(compositions, log=True) |
ptable_heatmap_ratio(comps_a, comps_b) |
---|---|
ptable_heatmap_plotly(atomic_masses) |
ptable_heatmap_plotly(compositions, log=True) |
Dash app using ptable_heatmap_plotly()
See examples/mprester_ptable.ipynb
.
Sunburst
See pymatviz/sunburst.py
.
spacegroup_sunburst([65, 134, 225, ...]) |
spacegroup_sunburst(["C2/m", "P-43m", "Fm-3m", ...]) |
---|---|
Sankey
See pymatviz/sankey.py
.
sankey_from_2_df_cols(df_perovskites) |
sankey_from_2_df_cols(df_rand_ints) |
---|---|
Structure
See pymatviz/structure_viz.py
. Currently structure plotting is only supported with matplotlib
in 2d. 3d interactive plots (probably with plotly
) are on the road map.
plot_structure_2d(mp_19017) |
plot_structure_2d(mp_12712) |
---|---|
Histograms
spacegroup_hist([65, 134, 225, ...]) |
spacegroup_hist(["C2/m", "P-43m", "Fm-3m", ...]) |
---|---|
residual_hist(y_true, y_pred) |
hist_elemental_prevalence(compositions, log=True, bar_values='count') |
Parity Plots
See pymatviz/parity.py
.
Uncertainty Calibration
qq_gaussian(y_true, y_pred, y_std) |
qq_gaussian(y_true, y_pred, y_std: dict) |
---|---|
error_decay_with_uncert(y_true, y_pred, y_std) |
error_decay_with_uncert(y_true, y_pred, y_std: dict) |
Cumulative Error & Residual
cumulative_error(preds, targets) |
cumulative_residual(preds, targets) |
---|---|
Classification Metrics
roc_curve(targets, proba_pos) |
precision_recall_curve(targets, proba_pos) |
---|---|
Correlation
marchenko_pastur(corr_mat, gamma=ncols/nrows) |
marchenko_pastur(corr_mat_significant_eval, gamma=ncols/nrows) |
---|---|
Glossary
- Residual
y_res = y_true - y_pred
: The difference between ground truth target and model prediction. - Error
y_err = abs(y_true - y_pred)
: Absolute error between target and model prediction. - Uncertainty
y_std
: The model's estimate for its error, i.e. how much the model thinks its prediction can be trusted. (std
for standard deviation.)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file pymatviz-0.6.3.tar.gz
.
File metadata
- Download URL: pymatviz-0.6.3.tar.gz
- Upload date:
- Size: 59.5 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 00963f48f20dcbb1e40e2ee5ec71a705da33c18dec080eaca3ed274534dfea50 |
|
MD5 | 6f4f830ee18673be7807eff9e2fdc781 |
|
BLAKE2b-256 | c2152f261bf0c6532293d05cf2631be37e9425094ec03b8e7c560dd00ad9cb6e |
File details
Details for the file pymatviz-0.6.3-py2.py3-none-any.whl
.
File metadata
- Download URL: pymatviz-0.6.3-py2.py3-none-any.whl
- Upload date:
- Size: 51.6 kB
- Tags: Python 2, Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | ce0cd7f02fc43f0b744c6510888a3bd167d3a39c39720eb1f03d2ed0dda231c2 |
|
MD5 | f8b9b7ffeff3ff6561583a7f9bef76b4 |
|
BLAKE2b-256 | f8df25f7f57e7b4a55c569f8e6d1d348ae1b3fd52b2e1b1f95fb70645b612ed6 |