Skip to main content

Probabilistic Programming in Python: Bayesian Modeling and Probabilistic Machine Learning with Aesara

Project description

PyMC logo

Build Status Coverage NumFOCUS_badge Binder Dockerhub DOIzenodo

PyMC (formerly PyMC3) is a Python package for Bayesian statistical modeling focusing on advanced Markov chain Monte Carlo (MCMC) and variational inference (VI) algorithms. Its flexibility and extensibility make it applicable to a large suite of problems.

Check out the PyMC overview, or one of the many examples! For questions on PyMC, head on over to our PyMC Discourse forum.

Features

  • Intuitive model specification syntax, for example, x ~ N(0,1) translates to x = Normal('x',0,1)

  • Powerful sampling algorithms, such as the No U-Turn Sampler, allow complex models with thousands of parameters with little specialized knowledge of fitting algorithms.

  • Variational inference: ADVI for fast approximate posterior estimation as well as mini-batch ADVI for large data sets.

  • Relies on Aesara which provides:
    • Computation optimization and dynamic C or JAX compilation

    • NumPy broadcasting and advanced indexing

    • Linear algebra operators

    • Simple extensibility

  • Transparent support for missing value imputation

Getting started

If you already know about Bayesian statistics:

Learn Bayesian statistics with a book together with PyMC

Audio & Video

Installation

To install PyMC on your system, follow the instructions on the installation guide.

Citing PyMC

Please choose from the following:

  • DOIpaper Probabilistic programming in Python using PyMC3, Salvatier J., Wiecki T.V., Fonnesbeck C. (2016)

  • DOIzenodo A DOI for all versions.

  • DOIs for specific versions are shown on Zenodo and under Releases

Contact

We are using discourse.pymc.io as our main communication channel. You can also follow us on Twitter @pymc_devs for updates and other announcements.

To ask a question regarding modeling or usage of PyMC we encourage posting to our Discourse forum under the “Questions” Category. You can also suggest feature in the “Development” Category.

To report an issue with PyMC please use the issue tracker.

Finally, if you need to get in touch for non-technical information about the project, send us an e-mail.

License

Apache License, Version 2.0

Software using PyMC

General purpose

  • Bambi: BAyesian Model-Building Interface (BAMBI) in Python.

  • SunODE: Fast ODE solver, much faster than the one that comes with PyMC.

  • pymc-learn: Custom PyMC models built on top of pymc3_models/scikit-learn API

  • fenics-pymc3: Differentiable interface to FEniCS, a library for solving partial differential equations.

Domain specific

  • Exoplanet: a toolkit for modeling of transit and/or radial velocity observations of exoplanets and other astronomical time series.

  • NiPyMC: Bayesian mixed-effects modeling of fMRI data in Python.

  • beat: Bayesian Earthquake Analysis Tool.

  • cell2location: Comprehensive mapping of tissue cell architecture via integrated single cell and spatial transcriptomics.

Please contact us if your software is not listed here.

Papers citing PyMC

See Google Scholar for a continuously updated list.

Contributors

See the GitHub contributor page. Also read our Code of Conduct guidelines for a better contributing experience.

Support

PyMC is a non-profit project under NumFOCUS umbrella. If you want to support PyMC financially, you can donate here.

Professional Consulting Support

You can get professional consulting support from PyMC Labs.

Sponsors

NumFOCUS

PyMCLabs

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pymc-4.1.3.tar.gz (510.8 kB view details)

Uploaded Source

Built Distribution

pymc-4.1.3-py3-none-any.whl (557.7 kB view details)

Uploaded Python 3

File details

Details for the file pymc-4.1.3.tar.gz.

File metadata

  • Download URL: pymc-4.1.3.tar.gz
  • Upload date:
  • Size: 510.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.7.13

File hashes

Hashes for pymc-4.1.3.tar.gz
Algorithm Hash digest
SHA256 f90b3d55b71c9dbe3078db110c85483758e739cc3f361e912f6726019d78b4a1
MD5 f274f6966ddb4b1e6b571f2db74a8ada
BLAKE2b-256 e84808885a02e3c545dda18ea098609437e7215156c061e4a9f48559181f67a8

See more details on using hashes here.

File details

Details for the file pymc-4.1.3-py3-none-any.whl.

File metadata

  • Download URL: pymc-4.1.3-py3-none-any.whl
  • Upload date:
  • Size: 557.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.7.13

File hashes

Hashes for pymc-4.1.3-py3-none-any.whl
Algorithm Hash digest
SHA256 e0575f3865a4319a889c12978b40b2b0e061c5d5f4b7d45f4d073021ce64aa64
MD5 a41225bfaa6a2cc859e442de8777a036
BLAKE2b-256 b5c7072a7e799c3e983980f926b2d96a4d80f9f551395534bfae1d21cb391ee2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page