Skip to main content

Probabilistic Programming in Python: Bayesian Modeling and Probabilistic Machine Learning with Aesara

Project description

PyMC logo

Build Status Coverage NumFOCUS_badge Binder Dockerhub DOIzenodo

PyMC (formerly PyMC3) is a Python package for Bayesian statistical modeling focusing on advanced Markov chain Monte Carlo (MCMC) and variational inference (VI) algorithms. Its flexibility and extensibility make it applicable to a large suite of problems.

Check out the PyMC overview, or one of the many examples! For questions on PyMC, head on over to our PyMC Discourse forum.

Features

  • Intuitive model specification syntax, for example, x ~ N(0,1) translates to x = Normal('x',0,1)

  • Powerful sampling algorithms, such as the No U-Turn Sampler, allow complex models with thousands of parameters with little specialized knowledge of fitting algorithms.

  • Variational inference: ADVI for fast approximate posterior estimation as well as mini-batch ADVI for large data sets.

  • Relies on Aesara which provides:
    • Computation optimization and dynamic C or JAX compilation

    • NumPy broadcasting and advanced indexing

    • Linear algebra operators

    • Simple extensibility

  • Transparent support for missing value imputation

Getting started

If you already know about Bayesian statistics:

Learn Bayesian statistics with a book together with PyMC

Audio & Video

Installation

To install PyMC on your system, follow the instructions on the installation guide.

Citing PyMC

Please choose from the following:

  • DOIpaper Probabilistic programming in Python using PyMC3, Salvatier J., Wiecki T.V., Fonnesbeck C. (2016)

  • DOIzenodo A DOI for all versions.

  • DOIs for specific versions are shown on Zenodo and under Releases

Contact

We are using discourse.pymc.io as our main communication channel. You can also follow us on Twitter @pymc_devs for updates and other announcements.

To ask a question regarding modeling or usage of PyMC we encourage posting to our Discourse forum under the “Questions” Category. You can also suggest feature in the “Development” Category.

To report an issue with PyMC please use the issue tracker.

Finally, if you need to get in touch for non-technical information about the project, send us an e-mail.

License

Apache License, Version 2.0

Software using PyMC

General purpose

  • Bambi: BAyesian Model-Building Interface (BAMBI) in Python.

  • SunODE: Fast ODE solver, much faster than the one that comes with PyMC.

  • pymc-learn: Custom PyMC models built on top of pymc3_models/scikit-learn API

  • fenics-pymc3: Differentiable interface to FEniCS, a library for solving partial differential equations.

Domain specific

  • Exoplanet: a toolkit for modeling of transit and/or radial velocity observations of exoplanets and other astronomical time series.

  • NiPyMC: Bayesian mixed-effects modeling of fMRI data in Python.

  • beat: Bayesian Earthquake Analysis Tool.

  • cell2location: Comprehensive mapping of tissue cell architecture via integrated single cell and spatial transcriptomics.

Please contact us if your software is not listed here.

Papers citing PyMC

See Google Scholar for a continuously updated list.

Contributors

See the GitHub contributor page. Also read our Code of Conduct guidelines for a better contributing experience.

Support

PyMC is a non-profit project under NumFOCUS umbrella. If you want to support PyMC financially, you can donate here.

Professional Consulting Support

You can get professional consulting support from PyMC Labs.

Sponsors

NumFOCUS

PyMCLabs

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pymc-4.1.4.tar.gz (496.9 kB view details)

Uploaded Source

Built Distribution

pymc-4.1.4-py3-none-any.whl (543.1 kB view details)

Uploaded Python 3

File details

Details for the file pymc-4.1.4.tar.gz.

File metadata

  • Download URL: pymc-4.1.4.tar.gz
  • Upload date:
  • Size: 496.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.7.13

File hashes

Hashes for pymc-4.1.4.tar.gz
Algorithm Hash digest
SHA256 9ac2a39778c44709806d57f2c2640c7bc06e33420cd399b5669482585396c978
MD5 3ef57d00c68f6cc6891a976918dfd45d
BLAKE2b-256 0c52a1faf8c165e659c975d4c6e16a865f6bbd395ecad55e89500df8336505c4

See more details on using hashes here.

File details

Details for the file pymc-4.1.4-py3-none-any.whl.

File metadata

  • Download URL: pymc-4.1.4-py3-none-any.whl
  • Upload date:
  • Size: 543.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.7.13

File hashes

Hashes for pymc-4.1.4-py3-none-any.whl
Algorithm Hash digest
SHA256 bdf29247c9a2685602b66499da8b8f69e295fd5b7cc547e9bd13031b274f9ea4
MD5 d4fbfcb0ea34095fa9d863e7a21ab59e
BLAKE2b-256 448d16e3f46730b50b3b9b7a7d359eeee1985513431e428582c6fa7546433ae5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page