Skip to main content

Medical Physics python modules

Project description

# PyMedPhys

## Description

A range of python modules encompased under the pymedphys package, designed to be built upon for Medical Physics applications.

## Alpha stage development

These libraries are currently under alpha level development. Be cautious with code in this library. Not only might code depending on it break, but the results given by this code likely may just be plain wrong.

This will be true throughout the alpha stage development of these libraries. This notice will be adjusted once this should no longer be the case.

Throughout the lifetime of this library however the following will always be true:

> In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise, unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing, shall any Contributor be liable to You for damages, including any direct, indirect, special, incidental, or consequential damages of any character arising as a result of this License or out of the use or inability to use the Work (including but not limited to damages for loss of goodwill, work stoppage, computer failure or malfunction, or any and all other commercial damages or losses), even if such Contributor has been advised of the possibility of such damages.

## Installation

This package is available on pypi at <https://pypi-hypernode.com/project/pymedphys/> and GitHub at <https://github.com/CCA-Physics/pymedphys>.

To install use the [Anaconda Python distribution](https://www.continuum.io/anaconda-overview) with the [conda-forge channel](https://conda-forge.org/):

`bash conda install -c conda-forge pymedphys `

## Team and copyright

The aim of PyMedPhys is that it will be developed by an open community of contributors. We use a shared copyright model that enables all contributors to maintain the copyright on their contributions. All code is licensed under the AGPLv3+ with additional terms from the Apache-2.0 license.

PyMedPhys’ current maintainers listed in alphabetical order, with affilliation, and main area of contribution:

### License agreement

Copyright (C) 2018 PyMedPhys Contributors

This program is free software: you can redistribute it and/or modify it under the terms of the GNU Affero General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version (the “AGPL-3.0+”).

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Affero General Public License and the additional terms for more details.

You should have received a copy of the GNU Affero General Public License along with this program. If not, see <http://www.gnu.org/licenses/>.

ADDITIONAL TERMS are also included as allowed by Section 7 of the GNU Affrero General Public License. These aditional terms are Sections 1, 5, 6, 7, 8, and 9 from the Apache License, Version 2.0 (the “Apache-2.0”) where all references to the definition “License” are instead defined to mean the AGPL-3.0+.

You should have received a copy of the Apache-2.0 along with this program. If not, see <http://www.apache.org/licenses/LICENSE-2.0>.

## Cyclic dependencies and the justification of file structure

If package A depends on package B, and package B depends on package C, it is important that package C does not then depend on package A. This is called a cyclic dependency. It causes issues in dependency logic and can be avoided by purposefully designing how the packages depend on one another.

Ideally library packages are split up module by module based upon single tasks that each library achieves. By having a very large number of small single purpose modules the dependency tree can become very complicated. Complicated dependency trees do not scale. As a result the inter dependencies between library packages is tightly regulated. The modules themselves need to be designed and programmed with these restrictions in mind.

The physical design of the module dependencies is inspired by John Lakos at Bloomberg, writer of Large-Scale C++ Software Design. He describes this methodology in a talk he gave which is available on YouTube:

> <https://youtu.be/QjFpKJ8Xx78?t=41m7s>

### Level 1

Level 1 packages are the foundation library packages.

These packages SHALL NOT depend on any internal package. They MAY however depend on external packages (Level 0).

Given that these Level 1 packages are foundation packages their external packages SHOULD only ever be those that are in wide use and are highly supported within the python community. Examples of reasonable external packages to be used are numpy, scipy, and pandas.

### Level 2

Level 2 packages.

The internal packages that Level 2 packages depend on SHALL only be Level 1 packages or external packages as long as those external packages don’t intern depend on one defined within this group.

### Level 3

Level 3 packages.

The internal packages that these depend on SHALL only be Level 1 or Level 2. They MAY also depend external packages as long as those external packages don’t intern depend on one defined within this group.

Project details


Release history Release notifications | RSS feed

This version

0.1.9

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pymedphys-0.1.9.tar.gz (17.3 kB view details)

Uploaded Source

Built Distribution

pymedphys-0.1.9-py3-none-any.whl (23.1 kB view details)

Uploaded Python 3

File details

Details for the file pymedphys-0.1.9.tar.gz.

File metadata

  • Download URL: pymedphys-0.1.9.tar.gz
  • Upload date:
  • Size: 17.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for pymedphys-0.1.9.tar.gz
Algorithm Hash digest
SHA256 d7890a1e26d912ee9c219ef17205f8b6a84d5ae403c7367e5f59fa708699a939
MD5 ada66ae36870619d72c5a400c4df615e
BLAKE2b-256 31e361306a980003eb16d45671feb74a46df0ae6b5bf89b43b82780811df9bd2

See more details on using hashes here.

File details

Details for the file pymedphys-0.1.9-py3-none-any.whl.

File metadata

File hashes

Hashes for pymedphys-0.1.9-py3-none-any.whl
Algorithm Hash digest
SHA256 3e4d47a17f2f54c8f42019c77c5e583eb941aeb2da43bc8fa50b00826c1458c3
MD5 7fe4a75b9c036f1cbab19652f3a08b9e
BLAKE2b-256 800784c1c7be95bb8b48444d727d744ef0879f48ccb89abb2ffbbcfbb437521e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page