Skip to main content

Scale serial and MPI-parallel python functions over hundreds of compute nodes all from within a jupyter notebook or serial python process.

Project description

pympipool

Unittests Coverage Status Binder

Challenges

In high performance computing (HPC) the Python programming language is commonly used as high-level language to orchestrate the coupling of scientific applications. Still the efficient usage of highly parallel HPC clusters remains challenging, in primarily three aspects:

  • Communication: Distributing python function calls over hundreds of compute node and gathering the results on a shared file system is technically possible, but highly inefficient. A socket-based communication approach is preferable.
  • Resource Management: Assigning Python functions to GPUs or executing Python functions on multiple CPUs using the message passing interface (MPI) requires major modifications to the python workflow.
  • Integration: Existing workflow libraries implement a secondary the job management on the Python level rather than leveraging the existing infrastructure provided by the job scheduler of the HPC.

pympipool is ...

In a given HPC allocation the pympipool library addresses these challenges by extending the Executor interface of the standard Python library to support the resource assignment in the HPC context. Computing resources can either be assigned on a per function call basis or as a block allocation on a per Executor basis. The pympipool library is built on top of the flux-framework to enable fine-grained resource assignment. In addition, Simple Linux Utility for Resource Management (SLURM) is supported as alternative queuing system and for workstation installations pympipool can be installed without a job scheduler.

pympipool is not ...

The pympipool library is not designed to request an allocation from the job scheduler of an HPC. Instead within a given allocation from the job scheduler the pympipool library can be employed to distribute a series of python function calls over the available computing resources to achieve maximum computing resource utilization.

Example

The following examples illustrates how pympipool can be used to distribute a series of MPI parallel function calls within a queuing system allocation. example.py:

import flux.job
from pympipool import Executor

def calc(i):
    from mpi4py import MPI
    size = MPI.COMM_WORLD.Get_size()
    rank = MPI.COMM_WORLD.Get_rank()
    return i, size, rank

with flux.job.FluxExecutor() as flux_exe:
    with Executor(max_cores=2, cores_per_worker=2, executor=flux_exe) as exe:
        fs = exe.submit(calc, 3)
        print(fs.result())

This example can be executed using:

python example.py

Which returns:

>>> [(0, 2, 0), (0, 2, 1)], [(1, 2, 0), (1, 2, 1)]

The important part in this example is that mpi4py is only used in the calc() function, not in the python script, consequently it is not necessary to call the script with mpiexec but instead a call with the regular python interpreter is sufficient. This highlights how pympipool allows the users to parallelize one function at a time and not having to convert their whole workflow to use mpi4py. The same code can also be executed inside a jupyter notebook directly which enables an interactive development process.

The interface of the standard concurrent.futures.Executor is extended by adding the option cores_per_worker=2 to assign multiple MPI ranks to each function call. To create two workers the maximum number of cores can be increased to max_cores=4. In this case each worker receives two cores resulting in a total of four CPU cores being utilized.

After submitting the function calc() with the corresponding parameter to the executor exe.submit(calc, 0) a python concurrent.futures.Future is returned. Consequently, the pympipool.Executor can be used as a drop-in replacement for the concurrent.futures.Executor which allows the user to add parallelism to their workflow one function at a time.

Disclaimer

While we try to develop a stable and reliable software library, the development remains a opensource project under the BSD 3-Clause License without any warranties::

BSD 3-Clause License

Copyright (c) 2022, Jan Janssen
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this
  list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice,
  this list of conditions and the following disclaimer in the documentation
  and/or other materials provided with the distribution.

* Neither the name of the copyright holder nor the names of its
  contributors may be used to endorse or promote products derived from
  this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Documentation

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pympipool-0.8.5.tar.gz (42.7 kB view details)

Uploaded Source

Built Distribution

pympipool-0.8.5-py3-none-any.whl (44.7 kB view details)

Uploaded Python 3

File details

Details for the file pympipool-0.8.5.tar.gz.

File metadata

  • Download URL: pympipool-0.8.5.tar.gz
  • Upload date:
  • Size: 42.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for pympipool-0.8.5.tar.gz
Algorithm Hash digest
SHA256 0107e221b681cd23c387ff302635d8be34dc617d2760e593fb510363b8b4d293
MD5 7db8406c5d864decf4c62038395ad62f
BLAKE2b-256 e722a0c15146d7f24c85a2dd672eb659206596e177f65abc0c0a9009fd278990

See more details on using hashes here.

File details

Details for the file pympipool-0.8.5-py3-none-any.whl.

File metadata

  • Download URL: pympipool-0.8.5-py3-none-any.whl
  • Upload date:
  • Size: 44.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for pympipool-0.8.5-py3-none-any.whl
Algorithm Hash digest
SHA256 af93552969f0e04507d9ee4c78ead01d020a69fa3440b45945e1b4534e6cc038
MD5 0762f857f689a1ad47be0ab943914c50
BLAKE2b-256 b7cc418a4f53fa845c64e726fe8bc83545597dc820debbe393d57087b9468c21

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page