Skip to main content

A Python wrapper around the NRLMSIS model.

Project description

https://swxtrec.github.io/pymsis/_static/pymsis-logo.png

pymsis: A python wrapper of the NRLMSIS model

PyPi Downloads GitHubActions

Pymsis is meant to be a minimal and fast Python wrapper of the NRLMSIS models. Documentation to get started quickly can be found on the home page. It includes some examples that demonstrate how to access and plot the data.

NRL Mass Spectrometer, Incoherent Scatter Radar Extended Model (MSIS)

The MSIS model is developed by the Naval Research Laboratory.

Note that the MSIS2 code is not available for commercial use without contacting NRL. See the MSIS2 license file for explicit details. We do not repackage any of the MSIS source code in this repository for that reason. However, we do provide utilities to easily download and extract the original source code. By using that code you agree to their terms and conditions.

References

Please acknowledge the University of Colorado Space Weather Technology, Research and Education Center (SWx TREC) and cite the original papers if you make use of this model in a publication.

Emmert, J. T., Drob, D. P., Picone, J. M., Siskind, D. E., Jones, M., Mlynczak, M. G., et al. (2020). NRLMSIS 2.0: A whole‐atmosphere empirical model of temperature and neutral species densities. Earth and Space Science, 7, e2020EA001321. https://doi.org/10.1029/2020EA001321

The Original NRLMSISE-00 paper

Picone, J. M., Hedin, A. E., Drob, D. P., and Aikin, A. C., NRLMSISE‐00 empirical model of the atmosphere: Statistical comparisons and scientific issues, J. Geophys. Res., 107( A12), 1468, doi:10.1029/2002JA009430, 2002.

Installation

The easiest way to install pymsis is to install from PyPI.

pip install pymsis

For the most up-to-date pymsis, you can install directly from the git repository

pip install git+https://github.com/SWxTREC/pymsis.git

or to work on it locally, you can clone the repository and use an editable install

git clone https://github.com/SWxTREC/pymsis.git
cd pymsis
pip install -e .

Remote installation

The installation is dependent on access to the NRL source code. If the download fails, of you have no internet access you can manually install the Fortran source code as follows.

  1. Download the source code

    The source code is hosted on the NRL’s website: https://map.nrl.navy.mil/map/pub/nrl/NRLMSIS/NRLMSIS2.0/ Download the NRLMSIS2.0.tar.gz file to your local system.

  2. Extract the source files

    The tar file needs to be extracted to a new msis2 directory in the base of the pymsis package.

    mkdir msis2
    tar -xvzf NRLMSIS2.0.tar.gz -C msis2/
  3. Install the Python package

    pip install .

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pymsis-0.2.1.tar.gz (89.0 kB view details)

Uploaded Source

Built Distributions

pymsis-0.2.1-cp39-cp39-win_amd64.whl (1.7 MB view details)

Uploaded CPython 3.9 Windows x86-64

pymsis-0.2.1-cp39-cp39-win32.whl (1.7 MB view details)

Uploaded CPython 3.9 Windows x86

pymsis-0.2.1-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

pymsis-0.2.1-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl (1.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686

pymsis-0.2.1-cp39-cp39-macosx_10_9_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pymsis-0.2.1-cp38-cp38-win_amd64.whl (1.7 MB view details)

Uploaded CPython 3.8 Windows x86-64

pymsis-0.2.1-cp38-cp38-win32.whl (1.7 MB view details)

Uploaded CPython 3.8 Windows x86

pymsis-0.2.1-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

pymsis-0.2.1-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl (1.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

pymsis-0.2.1-cp38-cp38-macosx_10_9_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

pymsis-0.2.1-cp37-cp37m-win_amd64.whl (1.7 MB view details)

Uploaded CPython 3.7m Windows x86-64

pymsis-0.2.1-cp37-cp37m-win32.whl (1.7 MB view details)

Uploaded CPython 3.7m Windows x86

pymsis-0.2.1-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

pymsis-0.2.1-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl (1.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ i686

pymsis-0.2.1-cp37-cp37m-macosx_10_9_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file pymsis-0.2.1.tar.gz.

File metadata

  • Download URL: pymsis-0.2.1.tar.gz
  • Upload date:
  • Size: 89.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for pymsis-0.2.1.tar.gz
Algorithm Hash digest
SHA256 08e02d3ea1c48cfa2810c59b2d45f3b76f4e98e578290f39f01b935bcfa62bbc
MD5 49c87885a15792d83c6c6c43f6a36a1f
BLAKE2b-256 2ff2de41de6401b9474ee65b3302938933d5cd1fc01db116b770c01b2250a2e7

See more details on using hashes here.

File details

Details for the file pymsis-0.2.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pymsis-0.2.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for pymsis-0.2.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 b8cb659e7932d63ed161d0e3a51beb4eff8fa5b7705d616c75b2a76449cec6c2
MD5 32207d7ce351d2326c53f9968893abb8
BLAKE2b-256 7447e78a805cc00f87f37d5b83b1365064d98a85bf230130bdaaf6de61565f14

See more details on using hashes here.

File details

Details for the file pymsis-0.2.1-cp39-cp39-win32.whl.

File metadata

  • Download URL: pymsis-0.2.1-cp39-cp39-win32.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for pymsis-0.2.1-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 d0f50ec44b3922f6183bd4575c9ffda2a37b7b836a8e199fdfd05ee43786209d
MD5 d4ea08df3917c710812a61d451075f7b
BLAKE2b-256 0b288ad1bc38a9d958ecae9d8213ecba5ff67474b848a1793afc6c2c9436d5db

See more details on using hashes here.

File details

Details for the file pymsis-0.2.1-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for pymsis-0.2.1-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 aa3cf5d58f80d05ca792c4e2729a29735a896f74872eeecd818285bdc60614b7
MD5 7110bfe867e849fd8868e57b0574fab1
BLAKE2b-256 1a5c1b7637ce4b7238d7d1128042a3d78d98b23501359145118490f547168989

See more details on using hashes here.

File details

Details for the file pymsis-0.2.1-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

  • Download URL: pymsis-0.2.1-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.9, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for pymsis-0.2.1-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 e6d3ea3be885a4b68a8f84b3cb270ab75be91e84e90656056a500d5d511a5fbf
MD5 fc11bcc08bde8c723a8a52646fb25f79
BLAKE2b-256 7c411418e0aad5b640aca4d41ad3613bd6404d4c6f383b6468b2531e306235ef

See more details on using hashes here.

File details

Details for the file pymsis-0.2.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: pymsis-0.2.1-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for pymsis-0.2.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 98b769938b2b591e345808b4fc7055c1d2c6b72f6b764e71834ba044f2098633
MD5 388aa96faf52aeeb6570ffd74aac0ed2
BLAKE2b-256 f2ea5adeed3b6187308f1889acd40028f89a28247912f3647d19c8a2c8689daa

See more details on using hashes here.

File details

Details for the file pymsis-0.2.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: pymsis-0.2.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for pymsis-0.2.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 85639582b9493221670857dfb0451611101e1c3ca42dcf7313098cb89e8f1499
MD5 55363e5e69d37a3620f84e02ec9d42db
BLAKE2b-256 a03d44011570c4b36cb02d7aab4bf46b8a138de077b9eaf72421c2790c653705

See more details on using hashes here.

File details

Details for the file pymsis-0.2.1-cp38-cp38-win32.whl.

File metadata

  • Download URL: pymsis-0.2.1-cp38-cp38-win32.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for pymsis-0.2.1-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 e1a8919a09d547d546bc3d66d3b5f97cfffe3899f217cef0f76e7dcbc14854bc
MD5 459f2645657a599442ddd262b5d65851
BLAKE2b-256 4c5afabcab7e4cf5b68ab33199210c3f42a115a246e1b70094b84f04848b95a2

See more details on using hashes here.

File details

Details for the file pymsis-0.2.1-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for pymsis-0.2.1-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 a5cc727f928acaba994d061d65094e4850124957accb933635d9174e602094c4
MD5 2e71e5d3fb938a58eded407792ef1b9b
BLAKE2b-256 3fe8e803d3973bcb248b35face39bfc2508fae12fb46cd2cde5c1f0ad25c43ab

See more details on using hashes here.

File details

Details for the file pymsis-0.2.1-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

  • Download URL: pymsis-0.2.1-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for pymsis-0.2.1-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 3022e6a15b0c3513fbb213fb2fb5ed0e49f8c13f466916543cc9cee73c0dd5d4
MD5 59473a71ad8f602b55997810c63b4d0d
BLAKE2b-256 9985bc1a2cbfc2e11d551402a2a0b907ad0d11f22d943863ed6dc55d2b317b66

See more details on using hashes here.

File details

Details for the file pymsis-0.2.1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: pymsis-0.2.1-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for pymsis-0.2.1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b4f4393321ec153053faa8175b499b76d50afedbed0cfe989708e6f9617b6cb3
MD5 d321d905cc5a889101a621d1ed06738c
BLAKE2b-256 298b3a18b6f40cc2a52745ce7573ac5962cd6f91854d439bd996f1aa8a7aef2e

See more details on using hashes here.

File details

Details for the file pymsis-0.2.1-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: pymsis-0.2.1-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for pymsis-0.2.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 20f083257ffb9b5dc332617545d211c471a85d1401c01426223fe2559933dc3c
MD5 f8ab9d9fe37f81ce685119d6e1e9e186
BLAKE2b-256 af8251e4914f03dc0c7ffb00e201296b01234b5b0bf5cb2fac7d843763384e84

See more details on using hashes here.

File details

Details for the file pymsis-0.2.1-cp37-cp37m-win32.whl.

File metadata

  • Download URL: pymsis-0.2.1-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for pymsis-0.2.1-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 1af70b0c1c78cb3d31c2ad20af49a504e324585f5581ede56b8c940ad99a2a52
MD5 40d01916fdaa2ad5a7650ed62bcf7c46
BLAKE2b-256 4576e300ada647b3f966854dc0619d50f3d1010e8e51de2e4b1f37ed06e9ba04

See more details on using hashes here.

File details

Details for the file pymsis-0.2.1-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for pymsis-0.2.1-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 e674f30f1e96d4fc62064d48d4878f68ffe5814132c033ea9bc2fb3da1831ee3
MD5 dc3ddc3808f09602372a907a61570cf6
BLAKE2b-256 d325508456faaf579d6c4c5ff899c50528edd616a391ccf143e48beca3fe58b7

See more details on using hashes here.

File details

Details for the file pymsis-0.2.1-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for pymsis-0.2.1-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 2ab6996f2a662f2b3d33e8e4d4e165c1a3a4f13cd3640a9d2128b5bb60660794
MD5 f01e5dae1a7fa753cbb5901c0941668b
BLAKE2b-256 4352b4ab994c886a17657564ebf9f386af63edebd6ba869acf6f35fb5db43d0d

See more details on using hashes here.

File details

Details for the file pymsis-0.2.1-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: pymsis-0.2.1-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for pymsis-0.2.1-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 33b1de4d1bda5be07284d9c685e0d7cd24b1845a08c9f33a6e02edddff63169a
MD5 f9fd960a7a2b0287c2f9346403e0a8b2
BLAKE2b-256 c819e7651d7b57caecf1a401eac0ff60551d246791d1f113150342e1747720fd

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page